JoachimVC's picture
Upload GAIA agent implementation files for assessment
c922f8b
"""
GAIA Environment Configuration Validator
This module provides functionality to validate environment configuration for the GAIA system.
It ensures all required environment variables are set and have valid values.
Usage:
from src.gaia.utils.config_validator import validate_config
validation_result = validate_config()
if validation_result['valid']:
print("Configuration is valid!")
else:
print(f"Configuration errors: {validation_result['errors']}")
"""
import os
import logging
from typing import Dict, List, Any, Tuple, Optional
import re
from pathlib import Path
# Configure logging
logger = logging.getLogger("gaia.config_validator")
handler = logging.StreamHandler()
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.setLevel(logging.INFO)
# Define required environment variables
REQUIRED_ENV_VARS = [
{
"name": "OPENAI_API_KEY",
"description": "OpenAI API key for model access",
"validator": lambda x: x.startswith("sk-") and len(x) > 20,
"error_message": "Must begin with 'sk-' and be at least 20 characters long"
},
{
"name": "SUPABASE_URL",
"description": "URL for your Supabase instance",
"validator": lambda x: x.startswith("https://") and ".supabase.co" in x,
"error_message": "Must be a valid Supabase URL (https://xxx.supabase.co)"
},
{
"name": "SUPABASE_KEY",
"description": "Service role API key for Supabase access",
"validator": lambda x: len(x) > 20,
"error_message": "Must be at least 20 characters long"
},
{
"name": "SERPER_API_KEY",
"description": "API key for Serper search service",
"validator": lambda x: len(x) > 5,
"error_message": "Must be at least 5 characters long"
}
]
# Define optional environment variables with default values
OPTIONAL_ENV_VARS = [
{
"name": "PERPLEXITY_API_KEY",
"description": "API key for Perplexity AI search",
"default": "",
"validator": lambda x: x == "" or len(x) > 5,
"error_message": "If provided, must be at least 5 characters long"
},
{
"name": "HF_TOKEN",
"description": "Hugging Face API token",
"default": "",
"validator": lambda x: x == "" or len(x) > 5,
"error_message": "If provided, must be at least 5 characters long"
},
{
"name": "DEFAULT_MODEL",
"description": "Default OpenAI model to use",
"default": "gpt-4o",
"validator": lambda x: x in ["gpt-4o", "gpt-4", "gpt-3.5-turbo", "text-davinci-003"],
"error_message": "Must be one of: gpt-4o, gpt-4, gpt-3.5-turbo, text-davinci-003"
},
{
"name": "EMBEDDING_MODEL",
"description": "OpenAI embedding model to use",
"default": "text-embedding-3-large",
"validator": lambda x: "embedding" in x.lower(),
"error_message": "Must be a valid embedding model"
},
{
"name": "FALLBACK_MODEL",
"description": "Fallback model if default is unavailable",
"default": "gpt-3.5-turbo",
"validator": lambda x: x in ["gpt-4o", "gpt-4", "gpt-3.5-turbo", "text-davinci-003"],
"error_message": "Must be one of: gpt-4o, gpt-4, gpt-3.5-turbo, text-davinci-003"
},
{
"name": "MEMORY_ENABLED",
"description": "Enable/disable memory functionality",
"default": "true",
"validator": lambda x: x.lower() in ["true", "false", "1", "0", "yes", "no"],
"error_message": "Must be a boolean value (true/false, 1/0, yes/no)"
},
{
"name": "MEMORY_TABLE_NAME",
"description": "Supabase table for memory storage",
"default": "gaia_memory",
"validator": lambda x: re.match(r'^[a-zA-Z0-9_]+$', x),
"error_message": "Must contain only letters, numbers, and underscores"
},
{
"name": "DUCKDUCKGO_TIMEOUT",
"description": "Timeout for DuckDuckGo searches in seconds",
"default": "30",
"validator": lambda x: x.isdigit() and 1 <= int(x) <= 60,
"error_message": "Must be a number between 1 and 60"
},
{
"name": "DUCKDUCKGO_MAX_RESULTS",
"description": "Maximum number of results from DuckDuckGo",
"default": "5",
"validator": lambda x: x.isdigit() and 1 <= int(x) <= 10,
"error_message": "Must be a number between 1 and 10"
},
{
"name": "OPENAI_API_BASE",
"description": "Custom API base URL for OpenAI (optional)",
"default": "https://api.openai.com/v1",
"validator": lambda x: x.startswith("https://"),
"error_message": "Must be a valid HTTPS URL"
},
{
"name": "MODEL_TEMPERATURE",
"description": "Temperature for model responses (0.0-1.0)",
"default": "0.7",
"validator": lambda x: 0 <= float(x) <= 1,
"error_message": "Must be a number between 0 and 1"
},
{
"name": "MODEL_MAX_TOKENS",
"description": "Maximum tokens in model responses",
"default": "4000",
"validator": lambda x: x.isdigit() and 1 <= int(x) <= 16000,
"error_message": "Must be a number between 1 and 16000"
},
{
"name": "WEB_SEARCH_RESULT_COUNT",
"description": "Number of results to return from web searches",
"default": "3",
"validator": lambda x: x.isdigit() and 1 <= int(x) <= 10,
"error_message": "Must be a number between 1 and 10"
},
{
"name": "MEMORY_TTL",
"description": "Time-to-live for memory entries in seconds",
"default": "604800", # 7 days
"validator": lambda x: x.isdigit() and int(x) > 0,
"error_message": "Must be a positive number"
},
{
"name": "MEMORY_CACHE_SIZE",
"description": "Size of memory cache",
"default": "100",
"validator": lambda x: x.isdigit() and int(x) > 0,
"error_message": "Must be a positive number"
},
{
"name": "MAX_ITERATIONS",
"description": "Maximum iterations for agent execution",
"default": "10",
"validator": lambda x: x.isdigit() and 1 <= int(x) <= 50,
"error_message": "Must be a number between 1 and 50"
},
{
"name": "VERBOSE",
"description": "Enable verbose logging",
"default": "false",
"validator": lambda x: x.lower() in ["true", "false", "1", "0", "yes", "no"],
"error_message": "Must be a boolean value (true/false, 1/0, yes/no)"
},
{
"name": "LOG_LEVEL",
"description": "Logging level (DEBUG, INFO, WARNING, ERROR)",
"default": "INFO",
"validator": lambda x: x.upper() in ["DEBUG", "INFO", "WARNING", "ERROR"],
"error_message": "Must be one of: DEBUG, INFO, WARNING, ERROR"
}
]
def validate_env_var(var_name: str, validator, value: str, error_message: str) -> Tuple[bool, Optional[str]]:
"""
Validate an environment variable value using the provided validator function.
Args:
var_name: The name of the environment variable
validator: A function that takes a value and returns a boolean
value: The value to validate
error_message: The error message to return if validation fails
Returns:
Tuple of (valid, error_message), where valid is a boolean and error_message
is None if the value is valid, or a string if it's invalid.
"""
try:
if validator(value):
return True, None
else:
return False, f"{var_name}: {error_message}"
except Exception as e:
return False, f"{var_name}: {error_message} (Error: {str(e)})"
def validate_config() -> Dict[str, Any]:
"""
Validate all environment variables against their validators.
Returns:
Dictionary containing:
- 'valid': Boolean indicating if all required variables are valid
- 'errors': List of error messages for invalid variables
- 'warnings': List of warning messages for missing optional variables
- 'config': Dictionary of all configuration values (with defaults applied)
"""
errors = []
warnings = []
config = {}
logger.info("Validating environment configuration...")
# Validate required environment variables
for var in REQUIRED_ENV_VARS:
var_name = var["name"]
var_value = os.environ.get(var_name)
if not var_value:
errors.append(f"{var_name}: Missing required environment variable")
continue
valid, error = validate_env_var(var_name, var["validator"], var_value, var["error_message"])
if not valid:
errors.append(error)
config[var_name] = var_value
# Validate optional environment variables
for var in OPTIONAL_ENV_VARS:
var_name = var["name"]
var_value = os.environ.get(var_name, var["default"])
if var_name not in os.environ and var["default"]:
warnings.append(f"{var_name}: Using default value: {var['default']}")
valid, error = validate_env_var(var_name, var["validator"], var_value, var["error_message"])
if not valid:
errors.append(error)
config[var_name] = var_value
# Additional cross-validations
# e.g., check if FALLBACK_MODEL is different from DEFAULT_MODEL
if config.get("FALLBACK_MODEL") == config.get("DEFAULT_MODEL"):
warnings.append("FALLBACK_MODEL is the same as DEFAULT_MODEL. Consider using a different model for fallback.")
result = {
"valid": len(errors) == 0,
"errors": errors,
"warnings": warnings,
"config": config
}
if result["valid"]:
logger.info("✅ Environment configuration is valid!")
else:
logger.error(f"❌ Environment configuration has {len(errors)} errors!")
for error in errors:
logger.error(f" - {error}")
if warnings:
logger.warning(f"⚠️ Environment configuration has {len(warnings)} warnings:")
for warning in warnings:
logger.warning(f" - {warning}")
return result
def generate_env_example() -> str:
"""
Generate a .env.example file template containing all required and optional variables.
Returns:
The path to the generated .env.example file
"""
env_example_path = Path(".") / ".env.example"
with open(env_example_path, "w") as f:
f.write("# GAIA System Environment Variables\n")
f.write("# Copy this file to .env and fill in the values\n\n")
f.write("# === REQUIRED ENVIRONMENT VARIABLES ===\n\n")
for var in REQUIRED_ENV_VARS:
f.write(f"# {var['description']}\n")
f.write(f"# {var['error_message']}\n")
f.write(f"{var['name']}=\n\n")
f.write("# === OPTIONAL ENVIRONMENT VARIABLES ===\n\n")
for var in OPTIONAL_ENV_VARS:
f.write(f"# {var['description']}\n")
f.write(f"# Default: {var['default']}\n")
f.write(f"# {var['error_message']}\n")
f.write(f"{var['name']}={var['default']}\n\n")
logger.info(f"Generated environment example file at {env_example_path}")
return str(env_example_path)
def initialize_env_from_example() -> None:
"""
Initialize a .env file from the .env.example if it doesn't exist.
"""
env_path = Path(".") / ".env"
env_example_path = Path(".") / ".env.example"
if env_path.exists():
logger.info(f".env file already exists at {env_path}")
return
if not env_example_path.exists():
generate_env_example()
with open(env_example_path, "r") as example_file:
example_content = example_file.read()
with open(env_path, "w") as env_file:
env_file.write(example_content)
logger.info(f"Initialized .env file from .env.example at {env_path}")
logger.info("Please edit the .env file and fill in the required values")
def get_documentation() -> Dict[str, List[Dict[str, str]]]:
"""
Get documentation for all environment variables.
Returns:
Dictionary containing lists of variable information for required and optional variables
"""
required_vars = []
for var in REQUIRED_ENV_VARS:
required_vars.append({
"name": var["name"],
"description": var["description"],
"validation": var["error_message"]
})
optional_vars = []
for var in OPTIONAL_ENV_VARS:
optional_vars.append({
"name": var["name"],
"description": var["description"],
"default": var["default"],
"validation": var["error_message"]
})
return {
"required": required_vars,
"optional": optional_vars
}
if __name__ == "__main__":
# When run as a script, validate the configuration and generate example files
validation_result = validate_config()
# Generate .env.example file
generate_env_example()
# Print validation summary
if validation_result["valid"]:
print("\n✅ Configuration is valid!")
else:
print("\n❌ Configuration validation failed:")
for error in validation_result["errors"]:
print(f" - {error}")
if validation_result["warnings"]:
print("\n⚠️ Configuration warnings:")
for warning in validation_result["warnings"]:
print(f" - {warning}")