JoachimVC's picture
Upload GAIA agent implementation files for assessment
c922f8b
"""
Enhanced Logging Framework for Gaia System
This module provides a comprehensive logging framework for the Gaia system,
with features including:
- Detailed logging at all stages of the workflow
- Timing information for performance analysis
- Tool selection decisions and reasoning
- API request and response logging
- Execution path tracing
- Error condition logging with stack traces
The framework is designed to be minimally invasive to normal operation
while providing detailed insights for debugging and performance analysis.
"""
import datetime
import inspect
import json
import logging
import os
import sys
import time
import traceback
import uuid
from contextlib import contextmanager
from dataclasses import dataclass, field
from typing import Dict, Any, Optional, List, Union, Callable
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s [%(levelname)s] %(message)s',
handlers=[
logging.StreamHandler(sys.stdout)
]
)
logger = logging.getLogger("gaia")
# Global trace ID for the current execution
_TRACE_ID = None
# Directory for log files
LOG_DIR = os.environ.get("GAIA_LOG_DIR", "logs")
# Ensure log directory exists
os.makedirs(LOG_DIR, exist_ok=True)
@dataclass
class LogEntry:
"""Class representing a structured log entry."""
timestamp: datetime.datetime
level: str
message: str
trace_id: str
category: str
details: Optional[Dict[str, Any]] = None
source_file: Optional[str] = None
source_line: Optional[int] = None
source_function: Optional[str] = None
def to_dict(self) -> Dict[str, Any]:
"""Convert the log entry to a dictionary."""
return {
"timestamp": self.timestamp.isoformat(),
"level": self.level,
"message": self.message,
"trace_id": self.trace_id,
"category": self.category,
"details": self.details,
"source_file": self.source_file,
"source_line": self.source_line,
"source_function": self.source_function
}
def to_json(self) -> str:
"""Convert the log entry to a JSON string."""
return json.dumps(self.to_dict(), default=str)
def get_trace_id() -> str:
"""Get the current trace ID."""
global _TRACE_ID
if _TRACE_ID is None:
_TRACE_ID = generate_trace_id()
return _TRACE_ID
def set_trace_id(trace_id: str):
"""Set the current trace ID."""
global _TRACE_ID
_TRACE_ID = trace_id
def generate_trace_id() -> str:
"""Generate a new trace ID."""
return str(uuid.uuid4())
def get_caller_info() -> Dict[str, Any]:
"""Get information about the caller of a function."""
frame = inspect.currentframe()
try:
# Go back 3 frames to get the caller of the logging function
frame = frame.f_back.f_back.f_back
filename = frame.f_code.co_filename
lineno = frame.f_lineno
function = frame.f_code.co_name
return {
"file": os.path.basename(filename),
"line": lineno,
"function": function
}
except (AttributeError, ValueError):
return {"file": "unknown", "line": 0, "function": "unknown"}
finally:
del frame # Avoid reference cycles
def log_entry(level: str, message: str, category: str, details: Optional[Dict[str, Any]] = None):
"""
Log a structured entry to the log file.
Args:
level: Log level (INFO, WARNING, ERROR, etc.)
message: Log message
category: Category of the log entry (agent, tool, api, etc.)
details: Additional details to include in the log entry
"""
trace_id = get_trace_id()
timestamp = datetime.datetime.now()
# Get caller information
caller_info = get_caller_info()
# Create log entry
entry = LogEntry(
timestamp=timestamp,
level=level,
message=message,
trace_id=trace_id,
category=category,
details=details,
source_file=caller_info["file"],
source_line=caller_info["line"],
source_function=caller_info["function"]
)
# Log to console
logger.log(
getattr(logging, level),
f"[{trace_id[:8]}] [{category}] {message}"
)
# Write to log file
log_file = os.path.join(LOG_DIR, f"gaia_{trace_id}.log")
with open(log_file, "a", encoding="utf-8") as f:
f.write(entry.to_json() + "\n")
# Write to combined log file
combined_log_file = os.path.join(LOG_DIR, "gaia_combined.log")
with open(combined_log_file, "a", encoding="utf-8") as f:
f.write(entry.to_json() + "\n")
return entry
def log_info(message: str, category: str = "general", details: Optional[Dict[str, Any]] = None):
"""Log an info message."""
return log_entry("INFO", message, category, details)
def log_warning(message: str, category: str = "general", details: Optional[Dict[str, Any]] = None):
"""Log a warning message."""
return log_entry("WARNING", message, category, details)
def log_error(error: Union[Exception, str], category: str = "error",
context: Optional[Dict[str, Any]] = None, critical: bool = False):
"""
Log an error message with stack trace.
Args:
error: Exception object or error message
category: Category of the error
context: Additional context for the error
critical: Whether this is a critical error
"""
if isinstance(error, Exception):
error_type = type(error).__name__
error_message = str(error)
stack_trace = traceback.format_exc()
else:
error_type = "Error"
error_message = error
stack_trace = "".join(traceback.format_stack()[:-1])
details = {
"error_type": error_type,
"error_message": error_message,
"stack_trace": stack_trace
}
if context:
details["context"] = context
level = "CRITICAL" if critical else "ERROR"
message = f"ERROR: {error_type} - {error_message}"
return log_entry(level, message, category, details)
def log_api_request(api_name: str, endpoint: str, method: str, params: Optional[Dict[str, Any]] = None):
"""
Log an API request.
Args:
api_name: Name of the API (e.g., "OpenAI", "Serper")
endpoint: API endpoint
method: HTTP method (GET, POST, etc.)
params: Request parameters
"""
message = f"API REQUEST: {api_name} - {method} {endpoint}"
details = {
"api_name": api_name,
"endpoint": endpoint,
"method": method,
"params": params
}
return log_entry("INFO", message, "api", details)
def log_api_response(api_name: str, endpoint: str, status_code: int,
response: Any, duration: float):
"""
Log an API response.
Args:
api_name: Name of the API
endpoint: API endpoint
status_code: HTTP status code
response: Response data
duration: Request duration in seconds
"""
message = f"API RESPONSE: {api_name} - {status_code} ({duration:.2f}s)"
# Sanitize response for logging
if isinstance(response, dict):
# Create a copy to avoid modifying the original
response_copy = response.copy()
# Truncate large text fields
for key, value in response_copy.items():
if isinstance(value, str) and len(value) > 500:
response_copy[key] = value[:500] + "... [truncated]"
sanitized_response = response_copy
elif isinstance(response, str):
if len(response) > 500:
sanitized_response = response[:500] + "... [truncated]"
else:
sanitized_response = response
else:
# Try to convert to string
try:
response_str = str(response)
if len(response_str) > 500:
sanitized_response = response_str[:500] + "... [truncated]"
else:
sanitized_response = response_str
except:
sanitized_response = "[Response could not be converted to string]"
details = {
"api_name": api_name,
"endpoint": endpoint,
"status_code": status_code,
"response": sanitized_response,
"duration": duration
}
return log_entry("INFO", message, "api", details)
def log_tool_selection(tool_name: str, reason: str, inputs: Optional[Dict[str, Any]] = None):
"""
Log a tool selection decision.
Args:
tool_name: Name of the selected tool
reason: Reason for selecting this tool
inputs: Tool inputs
"""
message = f"TOOL SELECTION: {tool_name}"
details = {
"tool_name": tool_name,
"reason": reason
}
if inputs:
# Sanitize inputs for logging
sanitized_inputs = {}
for key, value in inputs.items():
if isinstance(value, str) and len(value) > 200:
sanitized_inputs[key] = value[:200] + "... [truncated]"
else:
sanitized_inputs[key] = value
details["inputs"] = sanitized_inputs
return log_entry("INFO", message, "tool", details)
def log_tool_execution(tool_name: str, success: bool, result: Any = None,
error: Optional[str] = None, duration: Optional[float] = None):
"""
Log a tool execution result.
Args:
tool_name: Name of the tool
success: Whether the execution was successful
result: Tool execution result (if successful)
error: Error message (if failed)
duration: Execution duration in seconds
"""
status = "SUCCESS" if success else "FAILURE"
message = f"TOOL EXECUTION: {tool_name} - {status}"
details = {
"tool_name": tool_name,
"success": success
}
if duration is not None:
details["duration"] = duration
if success and result is not None:
# Sanitize result for logging
if isinstance(result, dict):
# Create a copy to avoid modifying the original
result_copy = result.copy()
# Truncate large text fields
for key, value in result_copy.items():
if isinstance(value, str) and len(value) > 200:
result_copy[key] = value[:200] + "... [truncated]"
details["result"] = result_copy
elif isinstance(result, str):
if len(result) > 200:
details["result"] = result[:200] + "... [truncated]"
else:
details["result"] = result
else:
# Try to convert to string
try:
result_str = str(result)
if len(result_str) > 200:
details["result"] = result_str[:200] + "... [truncated]"
else:
details["result"] = result_str
except:
details["result"] = "[Result could not be converted to string]"
if not success and error:
details["error"] = error
return log_entry("INFO", message, "tool", details)
def log_workflow_step(step_name: str, description: str,
inputs: Optional[Dict[str, Any]] = None,
outputs: Optional[Dict[str, Any]] = None):
"""
Log a workflow step.
Args:
step_name: Name of the workflow step
description: Description of the step
inputs: Step inputs
outputs: Step outputs
"""
message = f"WORKFLOW STEP: {step_name} - {description}"
details = {}
if inputs:
# Sanitize inputs for logging
sanitized_inputs = {}
for key, value in inputs.items():
if isinstance(value, str) and len(value) > 200:
sanitized_inputs[key] = value[:200] + "... [truncated]"
else:
sanitized_inputs[key] = value
details["inputs"] = sanitized_inputs
if outputs:
# Sanitize outputs for logging
sanitized_outputs = {}
for key, value in outputs.items():
if isinstance(value, str) and len(value) > 200:
sanitized_outputs[key] = value[:200] + "... [truncated]"
else:
sanitized_outputs[key] = value
details["outputs"] = sanitized_outputs
return log_entry("INFO", message, "workflow", details)
def log_memory_operation(operation: str, key: str, value_type: str,
success: bool, error: Optional[str] = None):
"""
Log a memory operation.
Args:
operation: Type of operation (store, get, update, delete)
key: Memory key
value_type: Type of value being stored/retrieved
success: Whether the operation was successful
error: Error message (if failed)
"""
status = "SUCCESS" if success else "FAILURE"
message = f"MEMORY OPERATION: {operation.upper()} {key} - {status}"
details = {
"operation": operation,
"key": key,
"value_type": value_type,
"success": success
}
if not success and error:
details["error"] = error
return log_entry("INFO", message, "memory", details)
@contextmanager
def TimingContext(name: str, category: str = "timing"):
"""
Context manager for timing operations.
Args:
name: Name of the operation being timed
category: Category of the operation
Example:
with TimingContext("process_question", "agent"):
result = agent.process_question(question)
"""
start_time = time.time()
try:
yield
finally:
end_time = time.time()
duration = end_time - start_time
message = f"TIMING_DATA: {name} - {duration:.4f}s"
details = {
"name": name,
"category": category,
"duration": duration,
"start_time": datetime.datetime.fromtimestamp(start_time).isoformat(),
"end_time": datetime.datetime.fromtimestamp(end_time).isoformat()
}
log_entry("INFO", message, "performance", details)
def initialize_logging(verbose: bool = False, log_dir: Optional[str] = None):
"""
Initialize the logging framework.
Args:
verbose: Whether to enable verbose logging
log_dir: Directory for log files
"""
global LOG_DIR
if log_dir:
LOG_DIR = log_dir
os.makedirs(LOG_DIR, exist_ok=True)
# Set logging level
if verbose:
logger.setLevel(logging.DEBUG)
else:
logger.setLevel(logging.INFO)
# Log initialization
log_info("Logging framework initialized", "system", {
"verbose": verbose,
"log_dir": LOG_DIR
})
return True