Spaces:
Running
Running
File size: 33,445 Bytes
9a6a4dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 |
"""
Code Analysis Tool for GAIA Agent
Python code parsing, analysis, and execution flow prediction.
Features:
- Python code parsing and AST analysis
- Dependency detection and import analysis
- Execution flow analysis and variable tracking
- Output prediction and result estimation
- Code optimization suggestions
- Error detection and debugging assistance
"""
import ast
import logging
import re
import sys
import inspect
import importlib
from typing import Dict, Any, List, Optional, Set, Tuple, Union
from pathlib import Path
import json
logger = logging.getLogger(__name__)
class CodeStructureAnalyzer:
"""Analyze Python code structure and components."""
def __init__(self):
"""Initialize the code structure analyzer."""
self.builtin_functions = set(dir(__builtins__))
self.standard_modules = {
'math', 'os', 'sys', 'json', 'csv', 'datetime', 'time',
'random', 'collections', 'itertools', 'functools', 'operator',
'string', 're', 'urllib', 'http', 'pathlib', 'typing',
'decimal', 'fractions', 'statistics', 'cmath'
}
def analyze_code_structure(self, code: str) -> Dict[str, Any]:
"""
Analyze the structure of Python code.
Args:
code: Python code to analyze
Returns:
Dictionary with code structure information
"""
try:
tree = ast.parse(code)
analysis = {
'imports': self._extract_imports(tree),
'functions': self._extract_functions(tree),
'classes': self._extract_classes(tree),
'variables': self._extract_variables(tree),
'constants': self._extract_constants(tree),
'control_flow': self._analyze_control_flow(tree),
'complexity': self._calculate_complexity(tree),
'dependencies': self._analyze_dependencies(tree),
'potential_outputs': self._predict_outputs(tree),
'syntax_valid': True
}
return analysis
except SyntaxError as e:
return {
'syntax_valid': False,
'syntax_error': str(e),
'line_number': e.lineno,
'error_text': e.text
}
except Exception as e:
logger.error(f"Code analysis failed: {e}")
return {
'syntax_valid': False,
'analysis_error': str(e)
}
def _extract_imports(self, tree: ast.AST) -> List[Dict[str, Any]]:
"""Extract import statements from AST."""
imports = []
for node in ast.walk(tree):
if isinstance(node, ast.Import):
for alias in node.names:
imports.append({
'type': 'import',
'module': alias.name,
'alias': alias.asname,
'is_standard': alias.name.split('.')[0] in self.standard_modules
})
elif isinstance(node, ast.ImportFrom):
module = node.module or ''
for alias in node.names:
imports.append({
'type': 'from_import',
'module': module,
'name': alias.name,
'alias': alias.asname,
'is_standard': module.split('.')[0] in self.standard_modules
})
return imports
def _extract_functions(self, tree: ast.AST) -> List[Dict[str, Any]]:
"""Extract function definitions from AST."""
functions = []
for node in ast.walk(tree):
if isinstance(node, ast.FunctionDef):
functions.append({
'name': node.name,
'args': [arg.arg for arg in node.args.args],
'defaults': len(node.args.defaults),
'returns': ast.unparse(node.returns) if node.returns else None,
'docstring': ast.get_docstring(node),
'line_number': node.lineno,
'is_async': False
})
elif isinstance(node, ast.AsyncFunctionDef):
functions.append({
'name': node.name,
'args': [arg.arg for arg in node.args.args],
'defaults': len(node.args.defaults),
'returns': ast.unparse(node.returns) if node.returns else None,
'docstring': ast.get_docstring(node),
'line_number': node.lineno,
'is_async': True
})
return functions
def _extract_classes(self, tree: ast.AST) -> List[Dict[str, Any]]:
"""Extract class definitions from AST."""
classes = []
for node in ast.walk(tree):
if isinstance(node, ast.ClassDef):
methods = []
for item in node.body:
if isinstance(item, ast.FunctionDef):
methods.append({
'name': item.name,
'args': [arg.arg for arg in item.args.args],
'is_property': any(
isinstance(d, ast.Name) and d.id == 'property'
for d in item.decorator_list
)
})
classes.append({
'name': node.name,
'bases': [ast.unparse(base) for base in node.bases],
'methods': methods,
'docstring': ast.get_docstring(node),
'line_number': node.lineno
})
return classes
def _extract_variables(self, tree: ast.AST) -> List[Dict[str, Any]]:
"""Extract variable assignments from AST."""
variables = []
for node in ast.walk(tree):
if isinstance(node, ast.Assign):
for target in node.targets:
if isinstance(target, ast.Name):
variables.append({
'name': target.id,
'type': 'assignment',
'value': ast.unparse(node.value),
'line_number': node.lineno
})
elif isinstance(node, ast.AnnAssign) and node.target:
if isinstance(node.target, ast.Name):
variables.append({
'name': node.target.id,
'type': 'annotated_assignment',
'annotation': ast.unparse(node.annotation),
'value': ast.unparse(node.value) if node.value else None,
'line_number': node.lineno
})
return variables
def _extract_constants(self, tree: ast.AST) -> List[Dict[str, Any]]:
"""Extract constant values from AST."""
constants = []
for node in ast.walk(tree):
if isinstance(node, ast.Constant):
constants.append({
'value': node.value,
'type': type(node.value).__name__,
'line_number': node.lineno
})
return constants
def _analyze_control_flow(self, tree: ast.AST) -> Dict[str, Any]:
"""Analyze control flow structures."""
control_flow = {
'if_statements': 0,
'for_loops': 0,
'while_loops': 0,
'try_except': 0,
'with_statements': 0,
'comprehensions': 0,
'max_nesting_depth': 0
}
def calculate_depth(node, current_depth=0):
max_depth = current_depth
for child in ast.iter_child_nodes(node):
if isinstance(child, (ast.If, ast.For, ast.While, ast.Try, ast.With)):
child_depth = calculate_depth(child, current_depth + 1)
max_depth = max(max_depth, child_depth)
else:
child_depth = calculate_depth(child, current_depth)
max_depth = max(max_depth, child_depth)
return max_depth
for node in ast.walk(tree):
if isinstance(node, ast.If):
control_flow['if_statements'] += 1
elif isinstance(node, ast.For):
control_flow['for_loops'] += 1
elif isinstance(node, ast.While):
control_flow['while_loops'] += 1
elif isinstance(node, ast.Try):
control_flow['try_except'] += 1
elif isinstance(node, ast.With):
control_flow['with_statements'] += 1
elif isinstance(node, (ast.ListComp, ast.DictComp, ast.SetComp, ast.GeneratorExp)):
control_flow['comprehensions'] += 1
control_flow['max_nesting_depth'] = calculate_depth(tree)
return control_flow
def _calculate_complexity(self, tree: ast.AST) -> Dict[str, int]:
"""Calculate code complexity metrics."""
complexity = {
'cyclomatic_complexity': 1, # Base complexity
'lines_of_code': len(ast.unparse(tree).split('\n')),
'number_of_nodes': len(list(ast.walk(tree)))
}
# Calculate cyclomatic complexity
for node in ast.walk(tree):
if isinstance(node, (ast.If, ast.While, ast.For, ast.ExceptHandler)):
complexity['cyclomatic_complexity'] += 1
elif isinstance(node, ast.BoolOp):
complexity['cyclomatic_complexity'] += len(node.values) - 1
return complexity
def _analyze_dependencies(self, tree: ast.AST) -> Dict[str, Any]:
"""Analyze code dependencies."""
dependencies = {
'external_modules': set(),
'standard_modules': set(),
'builtin_functions': set(),
'undefined_names': set()
}
# Track defined names
defined_names = set()
# Extract imports
for node in ast.walk(tree):
if isinstance(node, ast.Import):
for alias in node.names:
module_name = alias.name.split('.')[0]
if module_name in self.standard_modules:
dependencies['standard_modules'].add(alias.name)
else:
dependencies['external_modules'].add(alias.name)
defined_names.add(alias.asname or alias.name)
elif isinstance(node, ast.ImportFrom):
module = node.module or ''
module_name = module.split('.')[0]
if module_name in self.standard_modules:
dependencies['standard_modules'].add(module)
else:
dependencies['external_modules'].add(module)
for alias in node.names:
defined_names.add(alias.asname or alias.name)
# Track function and class definitions
elif isinstance(node, (ast.FunctionDef, ast.AsyncFunctionDef, ast.ClassDef)):
defined_names.add(node.name)
# Track variable assignments
elif isinstance(node, ast.Assign):
for target in node.targets:
if isinstance(target, ast.Name):
defined_names.add(target.id)
# Find undefined names
for node in ast.walk(tree):
if isinstance(node, ast.Name) and isinstance(node.ctx, ast.Load):
if (node.id not in defined_names and
node.id not in self.builtin_functions and
not node.id.startswith('_')):
dependencies['undefined_names'].add(node.id)
elif node.id in self.builtin_functions:
dependencies['builtin_functions'].add(node.id)
# Convert sets to lists for JSON serialization
for key in dependencies:
dependencies[key] = list(dependencies[key])
return dependencies
def _predict_outputs(self, tree: ast.AST) -> List[Dict[str, Any]]:
"""Predict potential outputs from code."""
outputs = []
for node in ast.walk(tree):
# Look for print statements
if isinstance(node, ast.Call):
if isinstance(node.func, ast.Name) and node.func.id == 'print':
outputs.append({
'type': 'print',
'line_number': node.lineno,
'args': [ast.unparse(arg) for arg in node.args]
})
# Look for return statements
elif isinstance(node, ast.Return):
outputs.append({
'type': 'return',
'line_number': node.lineno,
'value': ast.unparse(node.value) if node.value else None
})
# Look for expressions that might produce output
elif isinstance(node, ast.Expr):
# Check if it's a standalone expression that would be printed in REPL
if not isinstance(node.value, ast.Call):
outputs.append({
'type': 'expression',
'line_number': node.lineno,
'expression': ast.unparse(node.value)
})
return outputs
class ExecutionFlowAnalyzer:
"""Analyze execution flow and predict behavior."""
def __init__(self):
"""Initialize execution flow analyzer."""
pass
def analyze_execution_flow(self, code: str) -> Dict[str, Any]:
"""
Analyze the execution flow of Python code.
Args:
code: Python code to analyze
Returns:
Execution flow analysis
"""
try:
tree = ast.parse(code)
analysis = {
'execution_order': self._determine_execution_order(tree),
'variable_lifecycle': self._track_variable_lifecycle(tree),
'function_calls': self._extract_function_calls(tree),
'potential_errors': self._detect_potential_errors(tree),
'performance_notes': self._analyze_performance(tree),
'final_result_prediction': self._predict_final_result(tree, code)
}
return analysis
except Exception as e:
logger.error(f"Execution flow analysis failed: {e}")
return {'error': str(e)}
def _determine_execution_order(self, tree: ast.AST) -> List[Dict[str, Any]]:
"""Determine the order of code execution."""
execution_order = []
for i, node in enumerate(tree.body):
if isinstance(node, ast.FunctionDef):
execution_order.append({
'step': i + 1,
'type': 'function_definition',
'name': node.name,
'line': node.lineno
})
elif isinstance(node, ast.ClassDef):
execution_order.append({
'step': i + 1,
'type': 'class_definition',
'name': node.name,
'line': node.lineno
})
elif isinstance(node, ast.Import):
modules = [alias.name for alias in node.names]
execution_order.append({
'step': i + 1,
'type': 'import',
'modules': modules,
'line': node.lineno
})
elif isinstance(node, ast.ImportFrom):
execution_order.append({
'step': i + 1,
'type': 'from_import',
'module': node.module,
'names': [alias.name for alias in node.names],
'line': node.lineno
})
elif isinstance(node, ast.Assign):
execution_order.append({
'step': i + 1,
'type': 'assignment',
'targets': [ast.unparse(target) for target in node.targets],
'value': ast.unparse(node.value),
'line': node.lineno
})
elif isinstance(node, ast.Expr):
execution_order.append({
'step': i + 1,
'type': 'expression',
'expression': ast.unparse(node.value),
'line': node.lineno
})
else:
execution_order.append({
'step': i + 1,
'type': type(node).__name__.lower(),
'line': node.lineno
})
return execution_order
def _track_variable_lifecycle(self, tree: ast.AST) -> Dict[str, Dict[str, Any]]:
"""Track variable definitions, modifications, and usage."""
variables = {}
for node in ast.walk(tree):
if isinstance(node, ast.Assign):
for target in node.targets:
if isinstance(target, ast.Name):
var_name = target.id
if var_name not in variables:
variables[var_name] = {
'first_assignment': node.lineno,
'assignments': [],
'usages': []
}
variables[var_name]['assignments'].append({
'line': node.lineno,
'value': ast.unparse(node.value)
})
elif isinstance(node, ast.Name) and isinstance(node.ctx, ast.Load):
var_name = node.id
if var_name in variables:
variables[var_name]['usages'].append(node.lineno)
return variables
def _extract_function_calls(self, tree: ast.AST) -> List[Dict[str, Any]]:
"""Extract all function calls in execution order."""
function_calls = []
for node in ast.walk(tree):
if isinstance(node, ast.Call):
call_info = {
'line': node.lineno,
'args': [ast.unparse(arg) for arg in node.args],
'kwargs': {kw.arg: ast.unparse(kw.value) for kw in node.keywords}
}
if isinstance(node.func, ast.Name):
call_info['function'] = node.func.id
call_info['type'] = 'simple_call'
elif isinstance(node.func, ast.Attribute):
call_info['function'] = ast.unparse(node.func)
call_info['type'] = 'method_call'
else:
call_info['function'] = ast.unparse(node.func)
call_info['type'] = 'complex_call'
function_calls.append(call_info)
return function_calls
def _detect_potential_errors(self, tree: ast.AST) -> List[Dict[str, Any]]:
"""Detect potential runtime errors."""
potential_errors = []
for node in ast.walk(tree):
# Division by zero
if isinstance(node, ast.BinOp) and isinstance(node.op, ast.Div):
if isinstance(node.right, ast.Constant) and node.right.value == 0:
potential_errors.append({
'type': 'division_by_zero',
'line': node.lineno,
'message': 'Division by zero detected'
})
# Undefined variable usage (basic check)
elif isinstance(node, ast.Name) and isinstance(node.ctx, ast.Load):
# This is a simplified check - would need more sophisticated analysis
pass
# Index out of bounds (basic patterns)
elif isinstance(node, ast.Subscript):
if isinstance(node.slice, ast.Constant):
potential_errors.append({
'type': 'potential_index_error',
'line': node.lineno,
'message': 'Potential index out of bounds'
})
return potential_errors
def _analyze_performance(self, tree: ast.AST) -> List[str]:
"""Analyze potential performance issues."""
performance_notes = []
for node in ast.walk(tree):
# Nested loops
if isinstance(node, ast.For):
for child in ast.walk(node):
if isinstance(child, ast.For) and child != node:
performance_notes.append(
f"Nested loops detected at line {node.lineno} - consider optimization"
)
break
# List comprehensions vs loops
elif isinstance(node, ast.ListComp):
performance_notes.append(
f"List comprehension at line {node.lineno} - good for performance"
)
return performance_notes
def _predict_final_result(self, tree: ast.AST, code: str) -> Dict[str, Any]:
"""Predict the final result of code execution."""
prediction = {
'has_return_statement': False,
'has_print_statements': False,
'last_expression': None,
'predicted_output_type': 'none'
}
# Check for return statements
for node in ast.walk(tree):
if isinstance(node, ast.Return):
prediction['has_return_statement'] = True
if node.value:
prediction['return_value'] = ast.unparse(node.value)
elif isinstance(node, ast.Call):
if isinstance(node.func, ast.Name) and node.func.id == 'print':
prediction['has_print_statements'] = True
# Check last statement
if tree.body:
last_stmt = tree.body[-1]
if isinstance(last_stmt, ast.Expr):
prediction['last_expression'] = ast.unparse(last_stmt.value)
prediction['predicted_output_type'] = 'expression_result'
elif isinstance(last_stmt, ast.Return):
prediction['predicted_output_type'] = 'return_value'
if prediction['has_print_statements']:
prediction['predicted_output_type'] = 'printed_output'
return prediction
class CodeAnalyzerTool:
"""AGNO-compatible code analysis tool."""
def __init__(self):
"""Initialize the code analyzer tool."""
self.structure_analyzer = CodeStructureAnalyzer()
self.flow_analyzer = ExecutionFlowAnalyzer()
self.available = True
logger.info("CodeAnalyzerTool initialized")
def analyze_python_code(self, code: str) -> str:
"""
Analyze Python code structure and execution flow.
Args:
code: Python code to analyze
Returns:
Formatted analysis report
"""
try:
# Analyze code structure
structure = self.structure_analyzer.analyze_code_structure(code)
if not structure.get('syntax_valid', False):
return f"Syntax Error: {structure.get('syntax_error', 'Unknown syntax error')}"
# Analyze execution flow
flow = self.flow_analyzer.analyze_execution_flow(code)
# Format report
report = "Code Analysis Report\n"
report += "=" * 50 + "\n\n"
# Structure analysis
report += "STRUCTURE ANALYSIS:\n"
report += f"- Functions: {len(structure['functions'])}\n"
report += f"- Classes: {len(structure['classes'])}\n"
report += f"- Variables: {len(structure['variables'])}\n"
report += f"- Imports: {len(structure['imports'])}\n"
report += f"- Complexity: {structure['complexity']['cyclomatic_complexity']}\n\n"
# Dependencies
if structure['dependencies']['external_modules']:
report += f"External Dependencies: {', '.join(structure['dependencies']['external_modules'])}\n"
# Execution flow
if 'execution_order' in flow:
report += f"\nEXECUTION STEPS: {len(flow['execution_order'])}\n"
# Predicted output
if 'final_result_prediction' in flow:
pred = flow['final_result_prediction']
report += f"\nPREDICTED OUTPUT TYPE: {pred['predicted_output_type']}\n"
if pred.get('last_expression'):
report += f"Last Expression: {pred['last_expression']}\n"
# Potential issues
if 'potential_errors' in flow and flow['potential_errors']:
report += "\nPOTENTIAL ISSUES:\n"
for error in flow['potential_errors']:
report += f"- Line {error['line']}: {error['message']}\n"
return report
except Exception as e:
return f"Analysis failed: {e}"
def predict_code_output(self, code: str) -> str:
"""
Predict the output of Python code without executing it.
Args:
code: Python code to analyze
Returns:
Predicted output description
"""
try:
structure = self.structure_analyzer.analyze_code_structure(code)
flow = self.flow_analyzer.analyze_execution_flow(code)
if not structure.get('syntax_valid', False):
return f"Cannot predict output - syntax error: {structure.get('syntax_error')}"
prediction = "Output Prediction:\n"
prediction += "-" * 30 + "\n"
# Check for print statements
if structure['potential_outputs']:
print_outputs = [out for out in structure['potential_outputs'] if out['type'] == 'print']
if print_outputs:
prediction += f"Print statements: {len(print_outputs)}\n"
for out in print_outputs[:3]: # Show first 3
prediction += f" Line {out['line_number']}: print({', '.join(out['args'])})\n"
# Check for return statements
returns = [out for out in structure['potential_outputs'] if out['type'] == 'return']
if returns:
prediction += f"Return statements: {len(returns)}\n"
for ret in returns[:3]:
prediction += f" Line {ret['line_number']}: return {ret['value']}\n"
# Check for expressions
expressions = [out for out in structure['potential_outputs'] if out['type'] == 'expression']
if expressions:
prediction += f"Final expression: {expressions[-1]['expression']}\n"
# Final result prediction
if 'final_result_prediction' in flow:
pred = flow['final_result_prediction']
prediction += f"\nFinal result type: {pred['predicted_output_type']}\n"
return prediction
except Exception as e:
return f"Prediction failed: {e}"
def detect_code_dependencies(self, code: str) -> str:
"""
Detect dependencies and imports required by code.
Args:
code: Python code to analyze
Returns:
Dependencies report
"""
try:
structure = self.structure_analyzer.analyze_code_structure(code)
if not structure.get('syntax_valid', False):
return f"Cannot analyze dependencies - syntax error: {structure.get('syntax_error')}"
deps = structure['dependencies']
report = "Dependencies Analysis:\n"
report += "-" * 30 + "\n"
if deps['standard_modules']:
report += f"Standard library modules: {', '.join(deps['standard_modules'])}\n"
if deps['external_modules']:
report += f"External modules: {', '.join(deps['external_modules'])}\n"
if deps['builtin_functions']:
report += f"Built-in functions used: {', '.join(deps['builtin_functions'])}\n"
if deps['undefined_names']:
report += f"Undefined names (potential issues): {', '.join(deps['undefined_names'])}\n"
return report
except Exception as e:
return f"Dependency analysis failed: {e}"
def suggest_code_optimizations(self, code: str) -> str:
"""
Suggest optimizations for Python code.
Args:
code: Python code to analyze
Returns:
Optimization suggestions
"""
try:
structure = self.structure_analyzer.analyze_code_structure(code)
flow = self.flow_analyzer.analyze_execution_flow(code)
suggestions = "Code Optimization Suggestions:\n"
suggestions += "-" * 40 + "\n"
# Complexity suggestions
complexity = structure['complexity']['cyclomatic_complexity']
if complexity > 10:
suggestions += f"- High complexity ({complexity}) - consider breaking into smaller functions\n"
# Control flow suggestions
control = structure['control_flow']
if control['max_nesting_depth'] > 3:
suggestions += f"- Deep nesting ({control['max_nesting_depth']} levels) - consider refactoring\n"
# Performance notes from flow analysis
if 'performance_notes' in flow:
for note in flow['performance_notes']:
suggestions += f"- {note}\n"
# Import suggestions
deps = structure['dependencies']
if len(deps['external_modules']) > 5:
suggestions += "- Many external dependencies - consider reducing for better portability\n"
if not suggestions.strip().endswith(":\n" + "-" * 40):
return suggestions
else:
return suggestions + "No specific optimizations suggested - code looks good!\n"
except Exception as e:
return f"Optimization analysis failed: {e}"
def get_code_analyzer_tools():
"""Get code analyzer tools for AGNO registration."""
tool = CodeAnalyzerTool()
return [
{
'name': 'analyze_python_code',
'function': tool.analyze_python_code,
'description': 'Analyze Python code structure, complexity, and execution flow'
},
{
'name': 'predict_code_output',
'function': tool.predict_code_output,
'description': 'Predict the output of Python code without executing it'
},
{
'name': 'detect_code_dependencies',
'function': tool.detect_code_dependencies,
'description': 'Detect dependencies and imports required by Python code'
},
{
'name': 'suggest_code_optimizations',
'function': tool.suggest_code_optimizations,
'description': 'Suggest optimizations and improvements for Python code'
}
]
if __name__ == "__main__":
# Test the code analyzer
tool = CodeAnalyzerTool()
test_code = """
import math
import numpy as np
def calculate_result(x, y):
result = math.sqrt(x**2 + y**2)
return result * math.pi
data = [1, 2, 3, 4, 5]
mean_value = np.mean(data)
final_result = calculate_result(mean_value, 2.5)
print(f"Final result: {final_result}")
final_result
"""
print("Testing CodeAnalyzerTool:")
print("=" * 50)
analysis = tool.analyze_python_code(test_code)
print(analysis)
print("\n" + "=" * 50)
prediction = tool.predict_code_output(test_code)
print(prediction) |