File size: 24,018 Bytes
9a6a4dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
"""
Data Analysis Engine for GAIA Agent - Phase 4
Advanced data analysis capabilities for Excel and structured data

Features:
- Statistical analysis of Excel data
- Data aggregation and summarization
- Financial calculations and reporting
- Category-based filtering (food vs drinks)
- Currency formatting and precision handling
- Data validation and quality checks
"""

import logging
import pandas as pd
import numpy as np
from typing import Dict, Any, List, Optional, Union, Tuple
from decimal import Decimal, ROUND_HALF_UP
import re
from datetime import datetime, date

logger = logging.getLogger(__name__)


class DataAnalysisEngine:
    """Advanced data analysis engine for GAIA evaluation tasks."""
    
    def __init__(self):
        """Initialize the data analysis engine."""
        self.available = True
        self.analysis_cache = {}
        
    def analyze_financial_data(self, data: Union[pd.DataFrame, List[Dict]], 
                              sales_columns: List[str] = None,
                              category_columns: List[str] = None,
                              filters: Dict[str, Any] = None) -> Dict[str, Any]:
        """
        Perform comprehensive financial data analysis.
        
        Args:
            data: DataFrame or list of dictionaries containing the data
            sales_columns: Columns containing sales/financial data
            category_columns: Columns containing category information
            filters: Dictionary of filters to apply
            
        Returns:
            Comprehensive financial analysis results
        """
        try:
            # Convert to DataFrame if needed
            if isinstance(data, list):
                df = pd.DataFrame(data)
            else:
                df = data.copy()
            
            if df.empty:
                return {"error": "No data provided for analysis"}
            
            # Auto-detect columns if not provided
            if sales_columns is None:
                sales_columns = self._detect_sales_columns(df)
            
            if category_columns is None:
                category_columns = self._detect_category_columns(df)
            
            # Apply filters
            filtered_df = self._apply_filters(df, filters) if filters else df
            
            # Perform analysis
            analysis_results = {
                "total_records": len(df),
                "filtered_records": len(filtered_df),
                "sales_analysis": self._analyze_sales_data(filtered_df, sales_columns),
                "category_analysis": self._analyze_categories(filtered_df, category_columns, sales_columns),
                "statistical_summary": self._generate_statistical_summary(filtered_df, sales_columns),
                "data_quality": self._assess_data_quality(filtered_df),
                "filters_applied": filters or {},
                "columns_analyzed": {
                    "sales_columns": sales_columns,
                    "category_columns": category_columns
                }
            }
            
            return analysis_results
            
        except Exception as e:
            logger.error(f"❌ Financial data analysis failed: {e}")
            return {"error": f"Analysis failed: {str(e)}"}
    
    def calculate_category_totals(self, data: Union[pd.DataFrame, List[Dict]],
                                 category_column: str,
                                 sales_column: str,
                                 include_categories: List[str] = None,
                                 exclude_categories: List[str] = None) -> Dict[str, Any]:
        """
        Calculate totals by category with inclusion/exclusion filters.
        
        Args:
            data: DataFrame or list of dictionaries
            category_column: Column containing categories
            sales_column: Column containing sales amounts
            include_categories: Categories to include
            exclude_categories: Categories to exclude
            
        Returns:
            Category totals and analysis
        """
        try:
            # Convert to DataFrame if needed
            if isinstance(data, list):
                df = pd.DataFrame(data)
            else:
                df = data.copy()
            
            if df.empty or category_column not in df.columns or sales_column not in df.columns:
                return {"error": "Required columns not found in data"}
            
            # Clean and prepare data
            df[category_column] = df[category_column].astype(str).str.strip()
            df[sales_column] = pd.to_numeric(df[sales_column], errors='coerce')
            
            # Remove rows with invalid sales data
            df = df.dropna(subset=[sales_column])
            
            # Apply category filters
            if include_categories:
                mask = df[category_column].str.lower().isin([cat.lower() for cat in include_categories])
                df = df[mask]
            
            if exclude_categories:
                mask = ~df[category_column].str.lower().isin([cat.lower() for cat in exclude_categories])
                df = df[mask]
            
            # Calculate totals by category
            category_totals = df.groupby(category_column)[sales_column].agg([
                'sum', 'count', 'mean', 'min', 'max'
            ]).round(2)
            
            # Calculate overall total
            overall_total = df[sales_column].sum()
            
            # Prepare results
            results = {
                "overall_total": float(overall_total),
                "formatted_total": self._format_currency(overall_total),
                "category_breakdown": {},
                "summary": {
                    "total_categories": len(category_totals),
                    "total_items": len(df),
                    "average_per_item": float(df[sales_column].mean()) if len(df) > 0 else 0
                },
                "filters_applied": {
                    "include_categories": include_categories,
                    "exclude_categories": exclude_categories
                }
            }
            
            # Add category breakdown
            for category, stats in category_totals.iterrows():
                results["category_breakdown"][category] = {
                    "total": float(stats['sum']),
                    "formatted_total": self._format_currency(stats['sum']),
                    "count": int(stats['count']),
                    "average": float(stats['mean']),
                    "min": float(stats['min']),
                    "max": float(stats['max']),
                    "percentage_of_total": float((stats['sum'] / overall_total * 100)) if overall_total > 0 else 0
                }
            
            return results
            
        except Exception as e:
            logger.error(f"❌ Category totals calculation failed: {e}")
            return {"error": f"Calculation failed: {str(e)}"}
    
    def detect_food_vs_drinks(self, data: Union[pd.DataFrame, List[Dict]],
                             category_columns: List[str] = None) -> Dict[str, Any]:
        """
        Detect and categorize items as food vs drinks.
        
        Args:
            data: DataFrame or list of dictionaries
            category_columns: Columns to analyze for food/drink classification
            
        Returns:
            Classification results with food and drink items
        """
        try:
            # Convert to DataFrame if needed
            if isinstance(data, list):
                df = pd.DataFrame(data)
            else:
                df = data.copy()
            
            if df.empty:
                return {"error": "No data provided"}
            
            # Auto-detect category columns if not provided
            if category_columns is None:
                category_columns = self._detect_category_columns(df)
            
            # Food and drink keywords
            food_keywords = [
                'burger', 'sandwich', 'pizza', 'salad', 'fries', 'chicken', 'beef', 'pork',
                'fish', 'pasta', 'rice', 'bread', 'soup', 'steak', 'wings', 'nuggets',
                'taco', 'burrito', 'wrap', 'hot dog', 'sub', 'panini', 'quesadilla',
                'breakfast', 'lunch', 'dinner', 'appetizer', 'dessert', 'cake', 'pie',
                'food', 'meal', 'dish', 'entree', 'side'
            ]
            
            drink_keywords = [
                'drink', 'beverage', 'soda', 'cola', 'pepsi', 'coke', 'sprite', 'fanta',
                'coffee', 'tea', 'latte', 'cappuccino', 'espresso', 'mocha',
                'juice', 'water', 'milk', 'shake', 'smoothie', 'beer', 'wine',
                'cocktail', 'martini', 'whiskey', 'vodka', 'rum', 'gin',
                'lemonade', 'iced tea', 'hot chocolate', 'energy drink'
            ]
            
            classification_results = {
                "food_items": [],
                "drink_items": [],
                "unclassified_items": [],
                "classification_summary": {}
            }
            
            # Analyze each category column
            for col in category_columns:
                if col not in df.columns:
                    continue
                
                unique_items = df[col].dropna().unique()
                
                for item in unique_items:
                    item_str = str(item).lower()
                    
                    # Check for food keywords
                    is_food = any(keyword in item_str for keyword in food_keywords)
                    # Check for drink keywords
                    is_drink = any(keyword in item_str for keyword in drink_keywords)
                    
                    if is_food and not is_drink:
                        classification_results["food_items"].append(str(item))
                    elif is_drink and not is_food:
                        classification_results["drink_items"].append(str(item))
                    else:
                        classification_results["unclassified_items"].append(str(item))
            
            # Remove duplicates
            classification_results["food_items"] = list(set(classification_results["food_items"]))
            classification_results["drink_items"] = list(set(classification_results["drink_items"]))
            classification_results["unclassified_items"] = list(set(classification_results["unclassified_items"]))
            
            # Generate summary
            classification_results["classification_summary"] = {
                "total_items": len(classification_results["food_items"]) + 
                              len(classification_results["drink_items"]) + 
                              len(classification_results["unclassified_items"]),
                "food_count": len(classification_results["food_items"]),
                "drink_count": len(classification_results["drink_items"]),
                "unclassified_count": len(classification_results["unclassified_items"]),
                "classification_confidence": (
                    (len(classification_results["food_items"]) + len(classification_results["drink_items"])) /
                    max(1, len(classification_results["food_items"]) + 
                           len(classification_results["drink_items"]) + 
                           len(classification_results["unclassified_items"]))
                ) * 100
            }
            
            return classification_results
            
        except Exception as e:
            logger.error(f"❌ Food vs drinks detection failed: {e}")
            return {"error": f"Detection failed: {str(e)}"}
    
    def _detect_sales_columns(self, df: pd.DataFrame) -> List[str]:
        """Detect columns that likely contain sales/financial data."""
        sales_keywords = [
            'sales', 'amount', 'total', 'price', 'cost', 'revenue', 'value',
            'sum', 'subtotal', 'grand total', 'net', 'gross'
        ]
        
        sales_columns = []
        
        for col in df.columns:
            col_lower = str(col).lower()
            
            # Check for sales keywords in column name
            if any(keyword in col_lower for keyword in sales_keywords):
                if pd.api.types.is_numeric_dtype(df[col]):
                    sales_columns.append(col)
                    continue
            
            # Check if column contains numeric data that looks like currency
            if pd.api.types.is_numeric_dtype(df[col]):
                values = df[col].dropna()
                if len(values) > 0:
                    # Check if values are positive and in reasonable range for currency
                    if values.min() >= 0 and values.max() < 1000000:
                        # Check if values have decimal places (common for currency)
                        decimal_count = sum(1 for v in values if v != int(v))
                        if decimal_count > len(values) * 0.1:  # 10% have decimals
                            sales_columns.append(col)
        
        return sales_columns
    
    def _detect_category_columns(self, df: pd.DataFrame) -> List[str]:
        """Detect columns that likely contain category/classification data."""
        category_keywords = [
            'category', 'type', 'item', 'product', 'name', 'description',
            'class', 'group', 'kind', 'menu', 'food', 'drink'
        ]
        
        category_columns = []
        
        for col in df.columns:
            col_lower = str(col).lower()
            
            # Check for category keywords
            if any(keyword in col_lower for keyword in category_keywords):
                if df[col].dtype == 'object':  # Text column
                    category_columns.append(col)
                    continue
            
            # Check if column contains text with reasonable variety
            if df[col].dtype == 'object':
                unique_count = df[col].nunique()
                total_count = len(df[col].dropna())
                
                # Good category column has some variety but not too much
                if total_count > 0 and 2 <= unique_count <= total_count * 0.5:
                    category_columns.append(col)
        
        return category_columns
    
    def _apply_filters(self, df: pd.DataFrame, filters: Dict[str, Any]) -> pd.DataFrame:
        """Apply filters to the dataframe."""
        filtered_df = df.copy()
        
        try:
            for column, filter_value in filters.items():
                if column not in df.columns:
                    continue
                
                if isinstance(filter_value, dict):
                    # Range filter
                    if 'min' in filter_value:
                        filtered_df = filtered_df[filtered_df[column] >= filter_value['min']]
                    if 'max' in filter_value:
                        filtered_df = filtered_df[filtered_df[column] <= filter_value['max']]
                elif isinstance(filter_value, list):
                    # Include filter
                    filtered_df = filtered_df[filtered_df[column].isin(filter_value)]
                else:
                    # Exact match filter
                    filtered_df = filtered_df[filtered_df[column] == filter_value]
            
            return filtered_df
            
        except Exception as e:
            logger.error(f"❌ Failed to apply filters: {e}")
            return df
    
    def _analyze_sales_data(self, df: pd.DataFrame, sales_columns: List[str]) -> Dict[str, Any]:
        """Analyze sales data columns."""
        sales_analysis = {}
        
        for col in sales_columns:
            if col not in df.columns:
                continue
            
            values = df[col].dropna()
            if len(values) == 0:
                continue
            
            sales_analysis[col] = {
                "total": float(values.sum()),
                "formatted_total": self._format_currency(values.sum()),
                "count": len(values),
                "average": float(values.mean()),
                "median": float(values.median()),
                "min": float(values.min()),
                "max": float(values.max()),
                "std_dev": float(values.std()) if len(values) > 1 else 0
            }
        
        # Calculate overall totals if multiple sales columns
        if len(sales_analysis) > 1:
            overall_total = sum(analysis["total"] for analysis in sales_analysis.values())
            sales_analysis["overall"] = {
                "total": overall_total,
                "formatted_total": self._format_currency(overall_total)
            }
        
        return sales_analysis
    
    def _analyze_categories(self, df: pd.DataFrame, category_columns: List[str], 
                           sales_columns: List[str]) -> Dict[str, Any]:
        """Analyze category distributions and their sales performance."""
        category_analysis = {}
        
        for cat_col in category_columns:
            if cat_col not in df.columns:
                continue
            
            category_stats = {
                "unique_categories": df[cat_col].nunique(),
                "category_distribution": df[cat_col].value_counts().to_dict(),
                "sales_by_category": {}
            }
            
            # Analyze sales by category
            for sales_col in sales_columns:
                if sales_col not in df.columns:
                    continue
                
                sales_by_cat = df.groupby(cat_col)[sales_col].agg([
                    'sum', 'count', 'mean'
                ]).round(2)
                
                category_stats["sales_by_category"][sales_col] = {}
                for category, stats in sales_by_cat.iterrows():
                    category_stats["sales_by_category"][sales_col][category] = {
                        "total": float(stats['sum']),
                        "formatted_total": self._format_currency(stats['sum']),
                        "count": int(stats['count']),
                        "average": float(stats['mean'])
                    }
            
            category_analysis[cat_col] = category_stats
        
        return category_analysis
    
    def _generate_statistical_summary(self, df: pd.DataFrame, sales_columns: List[str]) -> Dict[str, Any]:
        """Generate comprehensive statistical summary."""
        summary = {
            "data_shape": df.shape,
            "missing_values": df.isnull().sum().to_dict(),
            "data_types": df.dtypes.astype(str).to_dict(),
            "numeric_summary": {}
        }
        
        # Detailed analysis for sales columns
        for col in sales_columns:
            if col in df.columns and pd.api.types.is_numeric_dtype(df[col]):
                values = df[col].dropna()
                if len(values) > 0:
                    summary["numeric_summary"][col] = {
                        "count": len(values),
                        "mean": float(values.mean()),
                        "std": float(values.std()) if len(values) > 1 else 0,
                        "min": float(values.min()),
                        "25%": float(values.quantile(0.25)),
                        "50%": float(values.quantile(0.50)),
                        "75%": float(values.quantile(0.75)),
                        "max": float(values.max()),
                        "sum": float(values.sum())
                    }
        
        return summary
    
    def _assess_data_quality(self, df: pd.DataFrame) -> Dict[str, Any]:
        """Assess data quality and identify potential issues."""
        quality_assessment = {
            "completeness": {},
            "consistency": {},
            "validity": {},
            "overall_score": 0
        }
        
        # Completeness check
        total_cells = df.shape[0] * df.shape[1]
        missing_cells = df.isnull().sum().sum()
        completeness_score = ((total_cells - missing_cells) / total_cells) * 100 if total_cells > 0 else 0
        
        quality_assessment["completeness"] = {
            "score": completeness_score,
            "missing_percentage": (missing_cells / total_cells) * 100 if total_cells > 0 else 0,
            "columns_with_missing": df.columns[df.isnull().any()].tolist()
        }
        
        # Consistency check (for numeric columns)
        numeric_columns = df.select_dtypes(include=[np.number]).columns
        consistency_issues = []
        
        for col in numeric_columns:
            values = df[col].dropna()
            if len(values) > 0:
                # Check for negative values in sales data
                if 'sales' in col.lower() or 'amount' in col.lower():
                    if (values < 0).any():
                        consistency_issues.append(f"{col}: Contains negative values")
                
                # Check for extreme outliers
                q1, q3 = values.quantile([0.25, 0.75])
                iqr = q3 - q1
                outliers = values[(values < q1 - 3*iqr) | (values > q3 + 3*iqr)]
                if len(outliers) > 0:
                    consistency_issues.append(f"{col}: Contains {len(outliers)} extreme outliers")
        
        quality_assessment["consistency"] = {
            "issues": consistency_issues,
            "score": max(0, 100 - len(consistency_issues) * 10)
        }
        
        # Overall quality score
        quality_assessment["overall_score"] = (
            completeness_score * 0.6 + 
            quality_assessment["consistency"]["score"] * 0.4
        )
        
        return quality_assessment
    
    def _format_currency(self, amount: float, currency: str = "USD", decimal_places: int = 2) -> str:
        """Format amount as currency with specified decimal places."""
        try:
            # Round to specified decimal places
            rounded_amount = Decimal(str(amount)).quantize(
                Decimal('0.' + '0' * decimal_places), 
                rounding=ROUND_HALF_UP
            )
            
            if currency.upper() == "USD":
                return f"${rounded_amount:.{decimal_places}f}"
            else:
                return f"{rounded_amount:.{decimal_places}f} {currency}"
                
        except Exception as e:
            logger.error(f"❌ Failed to format currency: {e}")
            return f"{amount:.{decimal_places}f}"


def get_data_analysis_engine_tools() -> List[Any]:
    """Get data analysis engine tools for AGNO integration."""
    from .base_tool import BaseTool
    
    class DataAnalysisEngineTool(BaseTool):
        """Data analysis engine tool for GAIA agent."""
        
        def __init__(self):
            super().__init__(
                name="data_analysis_engine",
                description="Advanced data analysis for financial and categorical data"
            )
            self.engine = DataAnalysisEngine()
        
        def execute(self, data: Union[pd.DataFrame, List[Dict]], 
                   analysis_type: str = "financial",
                   **kwargs) -> Dict[str, Any]:
            """Execute data analysis."""
            try:
                if analysis_type == "financial":
                    return self.engine.analyze_financial_data(data, **kwargs)
                elif analysis_type == "category_totals":
                    return self.engine.calculate_category_totals(data, **kwargs)
                elif analysis_type == "food_vs_drinks":
                    return self.engine.detect_food_vs_drinks(data, **kwargs)
                else:
                    return {"error": f"Unknown analysis type: {analysis_type}"}
                    
            except Exception as e:
                return {"error": f"Data analysis failed: {str(e)}"}
    
    return [DataAnalysisEngineTool()]