Spaces:
Running
Running
File size: 24,018 Bytes
9a6a4dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 |
"""
Data Analysis Engine for GAIA Agent - Phase 4
Advanced data analysis capabilities for Excel and structured data
Features:
- Statistical analysis of Excel data
- Data aggregation and summarization
- Financial calculations and reporting
- Category-based filtering (food vs drinks)
- Currency formatting and precision handling
- Data validation and quality checks
"""
import logging
import pandas as pd
import numpy as np
from typing import Dict, Any, List, Optional, Union, Tuple
from decimal import Decimal, ROUND_HALF_UP
import re
from datetime import datetime, date
logger = logging.getLogger(__name__)
class DataAnalysisEngine:
"""Advanced data analysis engine for GAIA evaluation tasks."""
def __init__(self):
"""Initialize the data analysis engine."""
self.available = True
self.analysis_cache = {}
def analyze_financial_data(self, data: Union[pd.DataFrame, List[Dict]],
sales_columns: List[str] = None,
category_columns: List[str] = None,
filters: Dict[str, Any] = None) -> Dict[str, Any]:
"""
Perform comprehensive financial data analysis.
Args:
data: DataFrame or list of dictionaries containing the data
sales_columns: Columns containing sales/financial data
category_columns: Columns containing category information
filters: Dictionary of filters to apply
Returns:
Comprehensive financial analysis results
"""
try:
# Convert to DataFrame if needed
if isinstance(data, list):
df = pd.DataFrame(data)
else:
df = data.copy()
if df.empty:
return {"error": "No data provided for analysis"}
# Auto-detect columns if not provided
if sales_columns is None:
sales_columns = self._detect_sales_columns(df)
if category_columns is None:
category_columns = self._detect_category_columns(df)
# Apply filters
filtered_df = self._apply_filters(df, filters) if filters else df
# Perform analysis
analysis_results = {
"total_records": len(df),
"filtered_records": len(filtered_df),
"sales_analysis": self._analyze_sales_data(filtered_df, sales_columns),
"category_analysis": self._analyze_categories(filtered_df, category_columns, sales_columns),
"statistical_summary": self._generate_statistical_summary(filtered_df, sales_columns),
"data_quality": self._assess_data_quality(filtered_df),
"filters_applied": filters or {},
"columns_analyzed": {
"sales_columns": sales_columns,
"category_columns": category_columns
}
}
return analysis_results
except Exception as e:
logger.error(f"β Financial data analysis failed: {e}")
return {"error": f"Analysis failed: {str(e)}"}
def calculate_category_totals(self, data: Union[pd.DataFrame, List[Dict]],
category_column: str,
sales_column: str,
include_categories: List[str] = None,
exclude_categories: List[str] = None) -> Dict[str, Any]:
"""
Calculate totals by category with inclusion/exclusion filters.
Args:
data: DataFrame or list of dictionaries
category_column: Column containing categories
sales_column: Column containing sales amounts
include_categories: Categories to include
exclude_categories: Categories to exclude
Returns:
Category totals and analysis
"""
try:
# Convert to DataFrame if needed
if isinstance(data, list):
df = pd.DataFrame(data)
else:
df = data.copy()
if df.empty or category_column not in df.columns or sales_column not in df.columns:
return {"error": "Required columns not found in data"}
# Clean and prepare data
df[category_column] = df[category_column].astype(str).str.strip()
df[sales_column] = pd.to_numeric(df[sales_column], errors='coerce')
# Remove rows with invalid sales data
df = df.dropna(subset=[sales_column])
# Apply category filters
if include_categories:
mask = df[category_column].str.lower().isin([cat.lower() for cat in include_categories])
df = df[mask]
if exclude_categories:
mask = ~df[category_column].str.lower().isin([cat.lower() for cat in exclude_categories])
df = df[mask]
# Calculate totals by category
category_totals = df.groupby(category_column)[sales_column].agg([
'sum', 'count', 'mean', 'min', 'max'
]).round(2)
# Calculate overall total
overall_total = df[sales_column].sum()
# Prepare results
results = {
"overall_total": float(overall_total),
"formatted_total": self._format_currency(overall_total),
"category_breakdown": {},
"summary": {
"total_categories": len(category_totals),
"total_items": len(df),
"average_per_item": float(df[sales_column].mean()) if len(df) > 0 else 0
},
"filters_applied": {
"include_categories": include_categories,
"exclude_categories": exclude_categories
}
}
# Add category breakdown
for category, stats in category_totals.iterrows():
results["category_breakdown"][category] = {
"total": float(stats['sum']),
"formatted_total": self._format_currency(stats['sum']),
"count": int(stats['count']),
"average": float(stats['mean']),
"min": float(stats['min']),
"max": float(stats['max']),
"percentage_of_total": float((stats['sum'] / overall_total * 100)) if overall_total > 0 else 0
}
return results
except Exception as e:
logger.error(f"β Category totals calculation failed: {e}")
return {"error": f"Calculation failed: {str(e)}"}
def detect_food_vs_drinks(self, data: Union[pd.DataFrame, List[Dict]],
category_columns: List[str] = None) -> Dict[str, Any]:
"""
Detect and categorize items as food vs drinks.
Args:
data: DataFrame or list of dictionaries
category_columns: Columns to analyze for food/drink classification
Returns:
Classification results with food and drink items
"""
try:
# Convert to DataFrame if needed
if isinstance(data, list):
df = pd.DataFrame(data)
else:
df = data.copy()
if df.empty:
return {"error": "No data provided"}
# Auto-detect category columns if not provided
if category_columns is None:
category_columns = self._detect_category_columns(df)
# Food and drink keywords
food_keywords = [
'burger', 'sandwich', 'pizza', 'salad', 'fries', 'chicken', 'beef', 'pork',
'fish', 'pasta', 'rice', 'bread', 'soup', 'steak', 'wings', 'nuggets',
'taco', 'burrito', 'wrap', 'hot dog', 'sub', 'panini', 'quesadilla',
'breakfast', 'lunch', 'dinner', 'appetizer', 'dessert', 'cake', 'pie',
'food', 'meal', 'dish', 'entree', 'side'
]
drink_keywords = [
'drink', 'beverage', 'soda', 'cola', 'pepsi', 'coke', 'sprite', 'fanta',
'coffee', 'tea', 'latte', 'cappuccino', 'espresso', 'mocha',
'juice', 'water', 'milk', 'shake', 'smoothie', 'beer', 'wine',
'cocktail', 'martini', 'whiskey', 'vodka', 'rum', 'gin',
'lemonade', 'iced tea', 'hot chocolate', 'energy drink'
]
classification_results = {
"food_items": [],
"drink_items": [],
"unclassified_items": [],
"classification_summary": {}
}
# Analyze each category column
for col in category_columns:
if col not in df.columns:
continue
unique_items = df[col].dropna().unique()
for item in unique_items:
item_str = str(item).lower()
# Check for food keywords
is_food = any(keyword in item_str for keyword in food_keywords)
# Check for drink keywords
is_drink = any(keyword in item_str for keyword in drink_keywords)
if is_food and not is_drink:
classification_results["food_items"].append(str(item))
elif is_drink and not is_food:
classification_results["drink_items"].append(str(item))
else:
classification_results["unclassified_items"].append(str(item))
# Remove duplicates
classification_results["food_items"] = list(set(classification_results["food_items"]))
classification_results["drink_items"] = list(set(classification_results["drink_items"]))
classification_results["unclassified_items"] = list(set(classification_results["unclassified_items"]))
# Generate summary
classification_results["classification_summary"] = {
"total_items": len(classification_results["food_items"]) +
len(classification_results["drink_items"]) +
len(classification_results["unclassified_items"]),
"food_count": len(classification_results["food_items"]),
"drink_count": len(classification_results["drink_items"]),
"unclassified_count": len(classification_results["unclassified_items"]),
"classification_confidence": (
(len(classification_results["food_items"]) + len(classification_results["drink_items"])) /
max(1, len(classification_results["food_items"]) +
len(classification_results["drink_items"]) +
len(classification_results["unclassified_items"]))
) * 100
}
return classification_results
except Exception as e:
logger.error(f"β Food vs drinks detection failed: {e}")
return {"error": f"Detection failed: {str(e)}"}
def _detect_sales_columns(self, df: pd.DataFrame) -> List[str]:
"""Detect columns that likely contain sales/financial data."""
sales_keywords = [
'sales', 'amount', 'total', 'price', 'cost', 'revenue', 'value',
'sum', 'subtotal', 'grand total', 'net', 'gross'
]
sales_columns = []
for col in df.columns:
col_lower = str(col).lower()
# Check for sales keywords in column name
if any(keyword in col_lower for keyword in sales_keywords):
if pd.api.types.is_numeric_dtype(df[col]):
sales_columns.append(col)
continue
# Check if column contains numeric data that looks like currency
if pd.api.types.is_numeric_dtype(df[col]):
values = df[col].dropna()
if len(values) > 0:
# Check if values are positive and in reasonable range for currency
if values.min() >= 0 and values.max() < 1000000:
# Check if values have decimal places (common for currency)
decimal_count = sum(1 for v in values if v != int(v))
if decimal_count > len(values) * 0.1: # 10% have decimals
sales_columns.append(col)
return sales_columns
def _detect_category_columns(self, df: pd.DataFrame) -> List[str]:
"""Detect columns that likely contain category/classification data."""
category_keywords = [
'category', 'type', 'item', 'product', 'name', 'description',
'class', 'group', 'kind', 'menu', 'food', 'drink'
]
category_columns = []
for col in df.columns:
col_lower = str(col).lower()
# Check for category keywords
if any(keyword in col_lower for keyword in category_keywords):
if df[col].dtype == 'object': # Text column
category_columns.append(col)
continue
# Check if column contains text with reasonable variety
if df[col].dtype == 'object':
unique_count = df[col].nunique()
total_count = len(df[col].dropna())
# Good category column has some variety but not too much
if total_count > 0 and 2 <= unique_count <= total_count * 0.5:
category_columns.append(col)
return category_columns
def _apply_filters(self, df: pd.DataFrame, filters: Dict[str, Any]) -> pd.DataFrame:
"""Apply filters to the dataframe."""
filtered_df = df.copy()
try:
for column, filter_value in filters.items():
if column not in df.columns:
continue
if isinstance(filter_value, dict):
# Range filter
if 'min' in filter_value:
filtered_df = filtered_df[filtered_df[column] >= filter_value['min']]
if 'max' in filter_value:
filtered_df = filtered_df[filtered_df[column] <= filter_value['max']]
elif isinstance(filter_value, list):
# Include filter
filtered_df = filtered_df[filtered_df[column].isin(filter_value)]
else:
# Exact match filter
filtered_df = filtered_df[filtered_df[column] == filter_value]
return filtered_df
except Exception as e:
logger.error(f"β Failed to apply filters: {e}")
return df
def _analyze_sales_data(self, df: pd.DataFrame, sales_columns: List[str]) -> Dict[str, Any]:
"""Analyze sales data columns."""
sales_analysis = {}
for col in sales_columns:
if col not in df.columns:
continue
values = df[col].dropna()
if len(values) == 0:
continue
sales_analysis[col] = {
"total": float(values.sum()),
"formatted_total": self._format_currency(values.sum()),
"count": len(values),
"average": float(values.mean()),
"median": float(values.median()),
"min": float(values.min()),
"max": float(values.max()),
"std_dev": float(values.std()) if len(values) > 1 else 0
}
# Calculate overall totals if multiple sales columns
if len(sales_analysis) > 1:
overall_total = sum(analysis["total"] for analysis in sales_analysis.values())
sales_analysis["overall"] = {
"total": overall_total,
"formatted_total": self._format_currency(overall_total)
}
return sales_analysis
def _analyze_categories(self, df: pd.DataFrame, category_columns: List[str],
sales_columns: List[str]) -> Dict[str, Any]:
"""Analyze category distributions and their sales performance."""
category_analysis = {}
for cat_col in category_columns:
if cat_col not in df.columns:
continue
category_stats = {
"unique_categories": df[cat_col].nunique(),
"category_distribution": df[cat_col].value_counts().to_dict(),
"sales_by_category": {}
}
# Analyze sales by category
for sales_col in sales_columns:
if sales_col not in df.columns:
continue
sales_by_cat = df.groupby(cat_col)[sales_col].agg([
'sum', 'count', 'mean'
]).round(2)
category_stats["sales_by_category"][sales_col] = {}
for category, stats in sales_by_cat.iterrows():
category_stats["sales_by_category"][sales_col][category] = {
"total": float(stats['sum']),
"formatted_total": self._format_currency(stats['sum']),
"count": int(stats['count']),
"average": float(stats['mean'])
}
category_analysis[cat_col] = category_stats
return category_analysis
def _generate_statistical_summary(self, df: pd.DataFrame, sales_columns: List[str]) -> Dict[str, Any]:
"""Generate comprehensive statistical summary."""
summary = {
"data_shape": df.shape,
"missing_values": df.isnull().sum().to_dict(),
"data_types": df.dtypes.astype(str).to_dict(),
"numeric_summary": {}
}
# Detailed analysis for sales columns
for col in sales_columns:
if col in df.columns and pd.api.types.is_numeric_dtype(df[col]):
values = df[col].dropna()
if len(values) > 0:
summary["numeric_summary"][col] = {
"count": len(values),
"mean": float(values.mean()),
"std": float(values.std()) if len(values) > 1 else 0,
"min": float(values.min()),
"25%": float(values.quantile(0.25)),
"50%": float(values.quantile(0.50)),
"75%": float(values.quantile(0.75)),
"max": float(values.max()),
"sum": float(values.sum())
}
return summary
def _assess_data_quality(self, df: pd.DataFrame) -> Dict[str, Any]:
"""Assess data quality and identify potential issues."""
quality_assessment = {
"completeness": {},
"consistency": {},
"validity": {},
"overall_score": 0
}
# Completeness check
total_cells = df.shape[0] * df.shape[1]
missing_cells = df.isnull().sum().sum()
completeness_score = ((total_cells - missing_cells) / total_cells) * 100 if total_cells > 0 else 0
quality_assessment["completeness"] = {
"score": completeness_score,
"missing_percentage": (missing_cells / total_cells) * 100 if total_cells > 0 else 0,
"columns_with_missing": df.columns[df.isnull().any()].tolist()
}
# Consistency check (for numeric columns)
numeric_columns = df.select_dtypes(include=[np.number]).columns
consistency_issues = []
for col in numeric_columns:
values = df[col].dropna()
if len(values) > 0:
# Check for negative values in sales data
if 'sales' in col.lower() or 'amount' in col.lower():
if (values < 0).any():
consistency_issues.append(f"{col}: Contains negative values")
# Check for extreme outliers
q1, q3 = values.quantile([0.25, 0.75])
iqr = q3 - q1
outliers = values[(values < q1 - 3*iqr) | (values > q3 + 3*iqr)]
if len(outliers) > 0:
consistency_issues.append(f"{col}: Contains {len(outliers)} extreme outliers")
quality_assessment["consistency"] = {
"issues": consistency_issues,
"score": max(0, 100 - len(consistency_issues) * 10)
}
# Overall quality score
quality_assessment["overall_score"] = (
completeness_score * 0.6 +
quality_assessment["consistency"]["score"] * 0.4
)
return quality_assessment
def _format_currency(self, amount: float, currency: str = "USD", decimal_places: int = 2) -> str:
"""Format amount as currency with specified decimal places."""
try:
# Round to specified decimal places
rounded_amount = Decimal(str(amount)).quantize(
Decimal('0.' + '0' * decimal_places),
rounding=ROUND_HALF_UP
)
if currency.upper() == "USD":
return f"${rounded_amount:.{decimal_places}f}"
else:
return f"{rounded_amount:.{decimal_places}f} {currency}"
except Exception as e:
logger.error(f"β Failed to format currency: {e}")
return f"{amount:.{decimal_places}f}"
def get_data_analysis_engine_tools() -> List[Any]:
"""Get data analysis engine tools for AGNO integration."""
from .base_tool import BaseTool
class DataAnalysisEngineTool(BaseTool):
"""Data analysis engine tool for GAIA agent."""
def __init__(self):
super().__init__(
name="data_analysis_engine",
description="Advanced data analysis for financial and categorical data"
)
self.engine = DataAnalysisEngine()
def execute(self, data: Union[pd.DataFrame, List[Dict]],
analysis_type: str = "financial",
**kwargs) -> Dict[str, Any]:
"""Execute data analysis."""
try:
if analysis_type == "financial":
return self.engine.analyze_financial_data(data, **kwargs)
elif analysis_type == "category_totals":
return self.engine.calculate_category_totals(data, **kwargs)
elif analysis_type == "food_vs_drinks":
return self.engine.detect_food_vs_drinks(data, **kwargs)
else:
return {"error": f"Unknown analysis type: {analysis_type}"}
except Exception as e:
return {"error": f"Data analysis failed: {str(e)}"}
return [DataAnalysisEngineTool()] |