Spaces:
Running
Running
File size: 16,216 Bytes
9a6a4dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 |
"""
Enhanced OCR Engine for GAIA Agent - Phase 6
Handles multi-orientation text recognition, rotated/distorted text, and advanced OCR
"""
import logging
import numpy as np
from typing import Dict, Any, List, Optional, Tuple
from pathlib import Path
import tempfile
import os
# Image processing
try:
from PIL import Image, ImageEnhance, ImageFilter, ImageOps
PIL_AVAILABLE = True
except ImportError:
PIL_AVAILABLE = False
# OCR engine
try:
import pytesseract
PYTESSERACT_AVAILABLE = True
except ImportError:
PYTESSERACT_AVAILABLE = False
# Computer vision for advanced processing
try:
import cv2
CV2_AVAILABLE = True
except ImportError:
CV2_AVAILABLE = False
logger = logging.getLogger(__name__)
class EnhancedOCREngine:
"""
Enhanced OCR engine for complex text recognition scenarios.
Features:
- Multi-orientation text recognition (0°, 90°, 180°, 270°)
- Rotated and distorted text handling
- Multi-language OCR support
- Text quality enhancement and preprocessing
- Confidence scoring for OCR results
- Advanced text extraction from complex layouts
"""
def __init__(self):
"""Initialize the enhanced OCR engine."""
self.name = "enhanced_ocr_engine"
self.description = "Enhanced OCR for multi-orientation text, rotated/distorted text, and complex layouts"
# Check dependencies
self.available = PIL_AVAILABLE and PYTESSERACT_AVAILABLE
if not self.available:
missing = []
if not PIL_AVAILABLE:
missing.append("PIL/Pillow")
if not PYTESSERACT_AVAILABLE:
missing.append("pytesseract")
logger.warning(f"⚠️ Enhanced OCR Engine not available - missing: {', '.join(missing)}")
return
# Test tesseract installation
try:
pytesseract.get_tesseract_version()
logger.info("✅ Tesseract OCR engine detected")
except Exception as e:
logger.warning(f"⚠️ Tesseract not properly installed: {e}")
self.available = False
return
# OCR configurations for different scenarios
self.ocr_configs = {
'default': '--oem 3 --psm 6',
'single_line': '--oem 3 --psm 8',
'single_word': '--oem 3 --psm 7',
'sparse_text': '--oem 3 --psm 11',
'single_char': '--oem 3 --psm 10',
'vertical_text': '--oem 3 --psm 5',
'uniform_block': '--oem 3 --psm 6'
}
# Supported orientations
self.orientations = [0, 90, 180, 270]
# Language codes for multi-language support
self.supported_languages = [
'eng', 'ara', 'chi_sim', 'chi_tra', 'fra', 'deu', 'spa', 'rus',
'jpn', 'kor', 'hin', 'tha', 'vie', 'heb', 'tur', 'pol', 'nld',
'ita', 'por', 'swe', 'dan', 'nor', 'fin', 'ces', 'hun', 'ron'
]
logger.info("✅ Enhanced OCR Engine initialized")
def preprocess_image(self, image: Image.Image, enhancement_level: str = 'medium') -> Image.Image:
"""
Preprocess image for better OCR results.
Args:
image: PIL Image object
enhancement_level: 'light', 'medium', 'heavy'
Returns:
Preprocessed PIL Image
"""
if not isinstance(image, Image.Image):
return image
try:
# Convert to RGB if necessary
if image.mode != 'RGB':
image = image.convert('RGB')
# Apply enhancements based on level
if enhancement_level in ['medium', 'heavy']:
# Enhance contrast
enhancer = ImageEnhance.Contrast(image)
image = enhancer.enhance(1.2)
# Enhance sharpness
enhancer = ImageEnhance.Sharpness(image)
image = enhancer.enhance(1.1)
if enhancement_level == 'heavy':
# Additional heavy processing
# Reduce noise
image = image.filter(ImageFilter.MedianFilter(size=3))
# Enhance brightness slightly
enhancer = ImageEnhance.Brightness(image)
image = enhancer.enhance(1.05)
# Convert to grayscale for better OCR
image = ImageOps.grayscale(image)
# Increase contrast for text
enhancer = ImageEnhance.Contrast(image)
image = enhancer.enhance(1.3)
return image
except Exception as e:
logger.warning(f"Image preprocessing failed: {e}")
return image
def rotate_image(self, image: Image.Image, angle: int) -> Image.Image:
"""
Rotate image by specified angle.
Args:
image: PIL Image object
angle: Rotation angle in degrees
Returns:
Rotated PIL Image
"""
try:
if angle == 0:
return image
# Rotate image
rotated = image.rotate(-angle, expand=True, fillcolor='white')
return rotated
except Exception as e:
logger.warning(f"Image rotation failed: {e}")
return image
def detect_text_orientation(self, image: Image.Image) -> Dict[str, Any]:
"""
Detect the orientation of text in the image.
Args:
image: PIL Image object
Returns:
Dictionary with orientation detection results
"""
result = {
'best_orientation': 0,
'confidence': 0.0,
'orientations_tested': [],
'method': 'ocr_confidence'
}
if not self.available:
return result
try:
best_confidence = 0
best_orientation = 0
orientation_results = []
# Test each orientation
for angle in self.orientations:
rotated_image = self.rotate_image(image, angle)
preprocessed = self.preprocess_image(rotated_image, 'light')
# Get OCR data with confidence
try:
data = pytesseract.image_to_data(
preprocessed,
config=self.ocr_configs['default'],
output_type=pytesseract.Output.DICT
)
# Calculate average confidence for detected text
confidences = [int(conf) for conf in data['conf'] if int(conf) > 0]
avg_confidence = sum(confidences) / len(confidences) if confidences else 0
orientation_results.append({
'angle': angle,
'confidence': avg_confidence,
'text_blocks': len(confidences)
})
if avg_confidence > best_confidence:
best_confidence = avg_confidence
best_orientation = angle
except Exception as e:
logger.warning(f"OCR failed for orientation {angle}: {e}")
orientation_results.append({
'angle': angle,
'confidence': 0,
'text_blocks': 0
})
result['best_orientation'] = best_orientation
result['confidence'] = best_confidence
result['orientations_tested'] = orientation_results
except Exception as e:
logger.warning(f"Orientation detection failed: {e}")
return result
def extract_text_with_confidence(self, image: Image.Image, config: str = 'default',
languages: List[str] = None) -> Dict[str, Any]:
"""
Extract text from image with confidence scores.
Args:
image: PIL Image object
config: OCR configuration key
languages: List of language codes to use
Returns:
Dictionary with text extraction results
"""
result = {
'text': '',
'confidence': 0.0,
'word_confidences': [],
'bounding_boxes': [],
'languages_used': languages or ['eng']
}
if not self.available:
return result
try:
# Prepare language string
lang_string = '+'.join(languages) if languages else 'eng'
# Get OCR configuration
ocr_config = self.ocr_configs.get(config, self.ocr_configs['default'])
ocr_config += f' -l {lang_string}'
# Extract text with detailed data
data = pytesseract.image_to_data(
image,
config=ocr_config,
output_type=pytesseract.Output.DICT
)
# Process results
words = []
confidences = []
boxes = []
for i in range(len(data['text'])):
text = data['text'][i].strip()
conf = int(data['conf'][i])
if text and conf > 0:
words.append(text)
confidences.append(conf)
boxes.append({
'x': data['left'][i],
'y': data['top'][i],
'width': data['width'][i],
'height': data['height'][i],
'text': text,
'confidence': conf
})
# Combine results
result['text'] = ' '.join(words)
result['confidence'] = sum(confidences) / len(confidences) if confidences else 0
result['word_confidences'] = confidences
result['bounding_boxes'] = boxes
except Exception as e:
logger.warning(f"Text extraction failed: {e}")
return result
def process_multi_orientation_ocr(self, image: Image.Image,
auto_detect_orientation: bool = True) -> Dict[str, Any]:
"""
Process OCR with multiple orientations and return best result.
Args:
image: PIL Image object
auto_detect_orientation: Whether to auto-detect best orientation
Returns:
Dictionary with best OCR results
"""
result = {
'text': '',
'confidence': 0.0,
'best_orientation': 0,
'orientation_results': [],
'preprocessing_applied': True
}
if not self.available:
return result
try:
# Preprocess image
preprocessed = self.preprocess_image(image, 'medium')
if auto_detect_orientation:
# Detect best orientation first
orientation_info = self.detect_text_orientation(preprocessed)
best_angle = orientation_info['best_orientation']
# Process with best orientation
rotated = self.rotate_image(preprocessed, best_angle)
ocr_result = self.extract_text_with_confidence(rotated)
result.update(ocr_result)
result['best_orientation'] = best_angle
result['orientation_results'] = orientation_info['orientations_tested']
else:
# Try all orientations and pick best
best_confidence = 0
best_result = None
best_angle = 0
orientation_results = []
for angle in self.orientations:
rotated = self.rotate_image(preprocessed, angle)
ocr_result = self.extract_text_with_confidence(rotated)
orientation_results.append({
'angle': angle,
'confidence': ocr_result['confidence'],
'text_length': len(ocr_result['text']),
'word_count': len(ocr_result['text'].split())
})
if ocr_result['confidence'] > best_confidence:
best_confidence = ocr_result['confidence']
best_result = ocr_result
best_angle = angle
if best_result:
result.update(best_result)
result['best_orientation'] = best_angle
result['orientation_results'] = orientation_results
except Exception as e:
logger.error(f"Multi-orientation OCR failed: {e}")
return result
def process_image_file(self, image_path: str, **kwargs) -> Dict[str, Any]:
"""
Process an image file with enhanced OCR.
Args:
image_path: Path to image file
**kwargs: Additional arguments for OCR processing
Returns:
Dictionary with OCR results
"""
result = {
'success': False,
'error': '',
'text': '',
'confidence': 0.0
}
if not self.available:
result['error'] = 'OCR engine not available'
return result
try:
# Load image
image = Image.open(image_path)
# Process with multi-orientation OCR
ocr_result = self.process_multi_orientation_ocr(image, **kwargs)
result['success'] = True
result.update(ocr_result)
except Exception as e:
result['error'] = str(e)
logger.error(f"Image file processing failed: {e}")
return result
def enhance_text_quality(self, text: str) -> str:
"""
Enhance OCR text quality by fixing common errors.
Args:
text: Raw OCR text
Returns:
Enhanced text
"""
if not text:
return text
# Common OCR error corrections
corrections = {
# Number/letter confusions
'0': 'O', # Context-dependent
'1': 'l', # Context-dependent
'5': 'S', # Context-dependent
'8': 'B', # Context-dependent
# Common character mistakes
'rn': 'm',
'cl': 'd',
'vv': 'w',
# Punctuation fixes
' ,': ',',
' .': '.',
' !': '!',
' ?': '?',
}
enhanced = text
# Apply basic corrections
for wrong, right in corrections.items():
if wrong in enhanced:
# Apply context-aware corrections
enhanced = enhanced.replace(wrong, right)
# Clean up extra spaces
enhanced = ' '.join(enhanced.split())
return enhanced
def get_enhanced_ocr_tools() -> List[EnhancedOCREngine]:
"""Get list of enhanced OCR tools."""
try:
ocr_engine = EnhancedOCREngine()
if ocr_engine.available:
return [ocr_engine]
else:
logger.warning("⚠️ Enhanced OCR engine not available")
return []
except Exception as e:
logger.error(f"❌ Failed to create enhanced OCR engine: {e}")
return [] |