File size: 24,369 Bytes
9a6a4dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
"""
Enhanced Excel Processing Tool for GAIA Agent - Phase 4
Advanced Excel file reading, processing, and data analysis capabilities

Features:
- Multi-sheet Excel processing with openpyxl and pandas
- Formula evaluation and calculation
- Data type detection and conversion
- Cell range analysis and aggregation
- Conditional data filtering and grouping
- Financial calculations with currency formatting
"""

import os
import logging
import pandas as pd
import numpy as np
from typing import Dict, Any, List, Optional, Union, Tuple
from pathlib import Path
import re
from decimal import Decimal, ROUND_HALF_UP

try:
    import openpyxl
    from openpyxl import load_workbook
    from openpyxl.utils import get_column_letter, column_index_from_string
    OPENPYXL_AVAILABLE = True
except ImportError:
    OPENPYXL_AVAILABLE = False

try:
    import xlrd
    XLRD_AVAILABLE = True
except ImportError:
    XLRD_AVAILABLE = False

logger = logging.getLogger(__name__)


class ExcelProcessor:
    """Enhanced Excel processor for GAIA data analysis tasks."""
    
    def __init__(self):
        """Initialize the Excel processor."""
        self.available = OPENPYXL_AVAILABLE
        self.workbook = None
        self.sheets_data = {}
        self.sheet_names = []
        
        if not self.available:
            logger.warning("⚠️ openpyxl not available - Excel processing limited")
    
    def load_excel_file(self, file_path: str) -> Dict[str, Any]:
        """
        Load Excel file and return comprehensive data structure.
        
        Args:
            file_path: Path to Excel file
            
        Returns:
            Dictionary containing sheets data and metadata
        """
        try:
            file_path = Path(file_path)
            if not file_path.exists():
                raise FileNotFoundError(f"Excel file not found: {file_path}")
            
            # Determine file type and load accordingly
            if file_path.suffix.lower() == '.csv':
                return self._load_csv_file(file_path)
            elif file_path.suffix.lower() in ['.xlsx', '.xlsm']:
                return self._load_xlsx_file(file_path)
            elif file_path.suffix.lower() == '.xls' and XLRD_AVAILABLE:
                return self._load_xls_file(file_path)
            else:
                # Try pandas as fallback
                return self._load_with_pandas(file_path)
                
        except Exception as e:
            logger.error(f"❌ Failed to load Excel file {file_path}: {e}")
            return {"error": str(e), "sheets": {}, "metadata": {}}
    
    def _load_xlsx_file(self, file_path: Path) -> Dict[str, Any]:
        """Load .xlsx file using openpyxl for advanced features."""
        if not OPENPYXL_AVAILABLE:
            return self._load_with_pandas(file_path)
        
        try:
            # Load workbook with openpyxl for formula access
            self.workbook = load_workbook(file_path, data_only=False)
            workbook_data_only = load_workbook(file_path, data_only=True)
            
            sheets_data = {}
            metadata = {
                "file_path": str(file_path),
                "file_size": file_path.stat().st_size,
                "sheet_count": len(self.workbook.sheetnames),
                "sheet_names": self.workbook.sheetnames
            }
            
            for sheet_name in self.workbook.sheetnames:
                sheet_data = self._process_worksheet(
                    self.workbook[sheet_name],
                    workbook_data_only[sheet_name],
                    sheet_name
                )
                sheets_data[sheet_name] = sheet_data
            
            self.sheets_data = sheets_data
            self.sheet_names = self.workbook.sheetnames
            
            return {
                "sheets": sheets_data,
                "metadata": metadata,
                "success": True
            }
            
        except Exception as e:
            logger.error(f"❌ Failed to load XLSX file: {e}")
            return {"error": str(e), "sheets": {}, "metadata": {}}
    
    def _load_xls_file(self, file_path: Path) -> Dict[str, Any]:
        """Load .xls file using xlrd."""
        try:
            # Use pandas for .xls files
            return self._load_with_pandas(file_path)
        except Exception as e:
            logger.error(f"❌ Failed to load XLS file: {e}")
            return {"error": str(e), "sheets": {}, "metadata": {}}
    
    def _load_csv_file(self, file_path: Path) -> Dict[str, Any]:
        """Load CSV file as single sheet."""
        try:
            df = pd.read_csv(file_path)
            
            # Process the dataframe
            processed_data = self._process_dataframe(df, "Sheet1")
            
            metadata = {
                "file_path": str(file_path),
                "file_size": file_path.stat().st_size,
                "sheet_count": 1,
                "sheet_names": ["Sheet1"]
            }
            
            return {
                "sheets": {"Sheet1": processed_data},
                "metadata": metadata,
                "success": True
            }
            
        except Exception as e:
            logger.error(f"❌ Failed to load CSV file: {e}")
            return {"error": str(e), "sheets": {}, "metadata": {}}
    
    def _load_with_pandas(self, file_path: Path) -> Dict[str, Any]:
        """Load Excel file using pandas as fallback."""
        try:
            # Read all sheets
            if file_path.suffix.lower() == '.csv':
                sheets_dict = {"Sheet1": pd.read_csv(file_path)}
            else:
                sheets_dict = pd.read_excel(file_path, sheet_name=None)
            
            sheets_data = {}
            for sheet_name, df in sheets_dict.items():
                sheets_data[sheet_name] = self._process_dataframe(df, sheet_name)
            
            metadata = {
                "file_path": str(file_path),
                "file_size": file_path.stat().st_size,
                "sheet_count": len(sheets_dict),
                "sheet_names": list(sheets_dict.keys())
            }
            
            return {
                "sheets": sheets_data,
                "metadata": metadata,
                "success": True
            }
            
        except Exception as e:
            logger.error(f"❌ Failed to load with pandas: {e}")
            return {"error": str(e), "sheets": {}, "metadata": {}}
    
    def _process_worksheet(self, worksheet, worksheet_data_only, sheet_name: str) -> Dict[str, Any]:
        """Process individual worksheet with openpyxl."""
        try:
            # Get dimensions
            max_row = worksheet.max_row
            max_col = worksheet.max_column
            
            # Extract data with formulas and values
            data_with_formulas = []
            data_values_only = []
            
            for row in range(1, max_row + 1):
                row_formulas = []
                row_values = []
                
                for col in range(1, max_col + 1):
                    # Get cell with formula
                    cell_formula = worksheet.cell(row=row, column=col)
                    # Get cell with calculated value
                    cell_value = worksheet_data_only.cell(row=row, column=col)
                    
                    row_formulas.append({
                        'value': cell_formula.value,
                        'formula': cell_formula.value if isinstance(cell_formula.value, str) and cell_formula.value.startswith('=') else None,
                        'data_type': str(type(cell_formula.value).__name__)
                    })
                    
                    row_values.append(cell_value.value)
                
                data_with_formulas.append(row_formulas)
                data_values_only.append(row_values)
            
            # Convert to DataFrame for easier analysis
            df = pd.DataFrame(data_values_only)
            
            # Process the dataframe
            processed_data = self._process_dataframe(df, sheet_name)
            
            # Add formula information
            processed_data['formulas'] = data_with_formulas
            processed_data['dimensions'] = {'rows': max_row, 'columns': max_col}
            
            return processed_data
            
        except Exception as e:
            logger.error(f"❌ Failed to process worksheet {sheet_name}: {e}")
            return {"error": str(e), "data": [], "columns": []}
    
    def _process_dataframe(self, df: pd.DataFrame, sheet_name: str) -> Dict[str, Any]:
        """Process pandas DataFrame and extract metadata."""
        try:
            # Clean the dataframe
            df_clean = df.copy()
            
            # Detect header row
            header_row = self._detect_header_row(df_clean)
            
            if header_row > 0:
                # Set proper headers
                df_clean.columns = df_clean.iloc[header_row]
                df_clean = df_clean.iloc[header_row + 1:].reset_index(drop=True)
            
            # Clean column names
            df_clean.columns = [str(col).strip() if pd.notna(col) else f"Column_{i}" 
                               for i, col in enumerate(df_clean.columns)]
            
            # Detect and convert data types
            df_clean = self._detect_and_convert_types(df_clean)
            
            # Generate summary statistics
            summary_stats = self._generate_summary_stats(df_clean)
            
            # Detect categories (for food vs drinks analysis)
            categories = self._detect_categories(df_clean)
            
            return {
                "data": df_clean.to_dict('records'),
                "dataframe": df_clean,
                "columns": list(df_clean.columns),
                "shape": df_clean.shape,
                "dtypes": df_clean.dtypes.to_dict(),
                "summary_stats": summary_stats,
                "categories": categories,
                "header_row": header_row,
                "sheet_name": sheet_name
            }
            
        except Exception as e:
            logger.error(f"❌ Failed to process dataframe for {sheet_name}: {e}")
            return {"error": str(e), "data": [], "columns": []}
    
    def _detect_header_row(self, df: pd.DataFrame) -> int:
        """Detect which row contains the headers."""
        for i in range(min(5, len(df))):  # Check first 5 rows
            row = df.iloc[i]
            # Check if row has mostly string values (likely headers)
            string_count = sum(1 for val in row if isinstance(val, str) and val.strip())
            if string_count > len(row) * 0.6:  # 60% strings
                return i
        return 0
    
    def _detect_and_convert_types(self, df: pd.DataFrame) -> pd.DataFrame:
        """Detect and convert appropriate data types."""
        df_converted = df.copy()
        
        for col in df_converted.columns:
            # Try to convert to numeric
            try:
                # Remove currency symbols and commas
                if df_converted[col].dtype == 'object':
                    cleaned_series = df_converted[col].astype(str).str.replace(r'[$,€£Β₯]', '', regex=True)
                    cleaned_series = cleaned_series.str.replace(r'[^\d.-]', '', regex=True)
                    
                    # Try to convert to numeric
                    numeric_series = pd.to_numeric(cleaned_series, errors='coerce')
                    
                    # If most values are numeric, use numeric type
                    if numeric_series.notna().sum() > len(numeric_series) * 0.7:
                        df_converted[col] = numeric_series
                        
            except Exception:
                pass  # Keep original type
        
        return df_converted
    
    def _generate_summary_stats(self, df: pd.DataFrame) -> Dict[str, Any]:
        """Generate summary statistics for the dataframe."""
        try:
            stats = {
                "row_count": len(df),
                "column_count": len(df.columns),
                "numeric_columns": [],
                "text_columns": [],
                "missing_values": df.isnull().sum().to_dict()
            }
            
            for col in df.columns:
                if pd.api.types.is_numeric_dtype(df[col]):
                    stats["numeric_columns"].append({
                        "name": col,
                        "min": float(df[col].min()) if pd.notna(df[col].min()) else None,
                        "max": float(df[col].max()) if pd.notna(df[col].max()) else None,
                        "mean": float(df[col].mean()) if pd.notna(df[col].mean()) else None,
                        "sum": float(df[col].sum()) if pd.notna(df[col].sum()) else None
                    })
                else:
                    stats["text_columns"].append({
                        "name": col,
                        "unique_values": int(df[col].nunique()),
                        "most_common": str(df[col].mode().iloc[0]) if len(df[col].mode()) > 0 else None
                    })
            
            return stats
            
        except Exception as e:
            logger.error(f"❌ Failed to generate summary stats: {e}")
            return {}
    
    def _detect_categories(self, df: pd.DataFrame) -> Dict[str, List[str]]:
        """Detect potential categories in the data (e.g., food vs drinks)."""
        categories = {}
        
        try:
            # Look for columns that might contain categories
            for col in df.columns:
                if df[col].dtype == 'object':
                    unique_values = df[col].dropna().unique()
                    
                    # Check for food/drink related categories
                    food_keywords = ['food', 'burger', 'sandwich', 'pizza', 'salad', 'fries', 'chicken', 'beef']
                    drink_keywords = ['drink', 'soda', 'coffee', 'tea', 'juice', 'water', 'beer', 'wine']
                    
                    food_items = []
                    drink_items = []
                    
                    for value in unique_values:
                        value_str = str(value).lower()
                        if any(keyword in value_str for keyword in food_keywords):
                            food_items.append(str(value))
                        elif any(keyword in value_str for keyword in drink_keywords):
                            drink_items.append(str(value))
                    
                    if food_items or drink_items:
                        categories[col] = {
                            "food": food_items,
                            "drinks": drink_items,
                            "other": [str(v) for v in unique_values if str(v) not in food_items + drink_items]
                        }
            
            return categories
            
        except Exception as e:
            logger.error(f"❌ Failed to detect categories: {e}")
            return {}
    
    def analyze_sales_data(self, category_filter: str = None, exclude_categories: List[str] = None) -> Dict[str, Any]:
        """
        Analyze sales data with category filtering.
        
        Args:
            category_filter: Category to include (e.g., 'food')
            exclude_categories: Categories to exclude (e.g., ['drinks'])
            
        Returns:
            Analysis results with totals and breakdowns
        """
        try:
            if not self.sheets_data:
                return {"error": "No data loaded"}
            
            results = {}
            total_sales = 0
            
            for sheet_name, sheet_data in self.sheets_data.items():
                if "error" in sheet_data:
                    continue
                
                df = sheet_data.get("dataframe")
                if df is None or df.empty:
                    continue
                
                # Find sales/amount columns
                sales_columns = self._find_sales_columns(df)
                category_columns = self._find_category_columns(df)
                
                sheet_total = 0
                filtered_data = df.copy()
                
                # Apply category filtering
                if category_filter or exclude_categories:
                    filtered_data = self._apply_category_filter(
                        df, category_columns, category_filter, exclude_categories
                    )
                
                # Calculate totals for each sales column
                for sales_col in sales_columns:
                    if sales_col in filtered_data.columns:
                        col_total = filtered_data[sales_col].sum()
                        if pd.notna(col_total):
                            sheet_total += col_total
                
                results[sheet_name] = {
                    "total": sheet_total,
                    "sales_columns": sales_columns,
                    "category_columns": category_columns,
                    "filtered_rows": len(filtered_data),
                    "original_rows": len(df)
                }
                
                total_sales += sheet_total
            
            # Format final result
            formatted_total = self._format_currency(total_sales)
            
            return {
                "total_sales": total_sales,
                "formatted_total": formatted_total,
                "sheet_results": results,
                "success": True
            }
            
        except Exception as e:
            logger.error(f"❌ Failed to analyze sales data: {e}")
            return {"error": str(e)}
    
    def _find_sales_columns(self, df: pd.DataFrame) -> List[str]:
        """Find columns that likely contain sales/amount data."""
        sales_keywords = ['sales', 'amount', 'total', 'price', 'cost', 'revenue', 'value']
        sales_columns = []
        
        for col in df.columns:
            col_lower = str(col).lower()
            if any(keyword in col_lower for keyword in sales_keywords):
                # Check if column contains numeric data
                if pd.api.types.is_numeric_dtype(df[col]):
                    sales_columns.append(col)
        
        # If no obvious sales columns, look for numeric columns with currency-like values
        if not sales_columns:
            for col in df.columns:
                if pd.api.types.is_numeric_dtype(df[col]):
                    # Check if values look like currency (positive numbers, reasonable range)
                    values = df[col].dropna()
                    if len(values) > 0 and values.min() >= 0 and values.max() < 1000000:
                        sales_columns.append(col)
        
        return sales_columns
    
    def _find_category_columns(self, df: pd.DataFrame) -> List[str]:
        """Find columns that likely contain category data."""
        category_keywords = ['category', 'type', 'item', 'product', 'name', 'description']
        category_columns = []
        
        for col in df.columns:
            col_lower = str(col).lower()
            if any(keyword in col_lower for keyword in category_keywords):
                if df[col].dtype == 'object':  # Text column
                    category_columns.append(col)
        
        return category_columns
    
    def _apply_category_filter(self, df: pd.DataFrame, category_columns: List[str], 
                              include_category: str = None, exclude_categories: List[str] = None) -> pd.DataFrame:
        """Apply category filtering to dataframe."""
        filtered_df = df.copy()
        
        try:
            for col in category_columns:
                if col not in df.columns:
                    continue
                
                mask = pd.Series([True] * len(df))
                
                # Apply include filter
                if include_category:
                    include_mask = df[col].astype(str).str.lower().str.contains(
                        include_category.lower(), na=False
                    )
                    mask = mask & include_mask
                
                # Apply exclude filter
                if exclude_categories:
                    for exclude_cat in exclude_categories:
                        exclude_mask = ~df[col].astype(str).str.lower().str.contains(
                            exclude_cat.lower(), na=False
                        )
                        mask = mask & exclude_mask
                
                filtered_df = filtered_df[mask]
            
            return filtered_df
            
        except Exception as e:
            logger.error(f"❌ Failed to apply category filter: {e}")
            return df
    
    def _format_currency(self, amount: float, currency: str = "USD", decimal_places: int = 2) -> str:
        """Format amount as currency with specified decimal places."""
        try:
            # Round to specified decimal places
            rounded_amount = Decimal(str(amount)).quantize(
                Decimal('0.' + '0' * decimal_places), 
                rounding=ROUND_HALF_UP
            )
            
            if currency.upper() == "USD":
                return f"${rounded_amount:.{decimal_places}f}"
            else:
                return f"{rounded_amount:.{decimal_places}f} {currency}"
                
        except Exception as e:
            logger.error(f"❌ Failed to format currency: {e}")
            return f"{amount:.{decimal_places}f}"
    
    def get_sheet_summary(self) -> Dict[str, Any]:
        """Get summary of all loaded sheets."""
        if not self.sheets_data:
            return {"error": "No data loaded"}
        
        summary = {
            "total_sheets": len(self.sheets_data),
            "sheet_names": list(self.sheets_data.keys()),
            "sheets": {}
        }
        
        for sheet_name, sheet_data in self.sheets_data.items():
            if "error" not in sheet_data:
                summary["sheets"][sheet_name] = {
                    "rows": sheet_data.get("shape", [0, 0])[0],
                    "columns": sheet_data.get("shape", [0, 0])[1],
                    "column_names": sheet_data.get("columns", []),
                    "has_numeric_data": len(sheet_data.get("summary_stats", {}).get("numeric_columns", [])) > 0
                }
        
        return summary


def get_excel_processor_tools() -> List[Any]:
    """Get Excel processor tools for AGNO integration."""
    from .base_tool import BaseTool
    
    class ExcelProcessorTool(BaseTool):
        """Excel processing tool for GAIA agent."""
        
        def __init__(self):
            super().__init__(
                name="excel_processor",
                description="Process and analyze Excel files for data analysis tasks"
            )
            self.processor = ExcelProcessor()
        
        def execute(self, file_path: str, analysis_type: str = "sales", 
                   category_filter: str = None, exclude_categories: List[str] = None) -> Dict[str, Any]:
            """Execute Excel processing and analysis."""
            try:
                # Load the Excel file
                result = self.processor.load_excel_file(file_path)
                
                if not result.get("success"):
                    return {"error": f"Failed to load Excel file: {result.get('error', 'Unknown error')}"}
                
                # Perform analysis based on type
                if analysis_type == "sales":
                    analysis_result = self.processor.analyze_sales_data(
                        category_filter=category_filter,
                        exclude_categories=exclude_categories
                    )
                    return analysis_result
                elif analysis_type == "summary":
                    return self.processor.get_sheet_summary()
                else:
                    return {"error": f"Unknown analysis type: {analysis_type}"}
                    
            except Exception as e:
                return {"error": f"Excel processing failed: {str(e)}"}
    
    return [ExcelProcessorTool()]