gaia-enhanced-agent / tools /code_execution_tool.py
GAIA Agent Deployment
Deploy Complete Enhanced GAIA Agent with Phase 1-6 Improvements
9a6a4dc
"""
Secure Code Execution Tool for GAIA Agent
Provides safe Python code execution with mathematical computation capabilities.
Features:
- Secure sandboxed execution environment
- Mathematical libraries (numpy, scipy, sympy, pandas)
- Timeout and resource management
- Result validation and formatting
- Security restrictions and input sanitization
"""
import os
import sys
import ast
import subprocess
import tempfile
import time
import signal
import logging
import traceback
import re
from typing import Dict, Any, Optional, Union, List
from pathlib import Path
import json
# Mathematical and scientific computing libraries
try:
import numpy as np
NUMPY_AVAILABLE = True
except ImportError:
NUMPY_AVAILABLE = False
try:
import pandas as pd
PANDAS_AVAILABLE = True
except ImportError:
PANDAS_AVAILABLE = False
try:
import scipy
SCIPY_AVAILABLE = True
except ImportError:
SCIPY_AVAILABLE = False
try:
import sympy as sp
SYMPY_AVAILABLE = True
except ImportError:
SYMPY_AVAILABLE = False
try:
import matplotlib
matplotlib.use('Agg') # Non-interactive backend
import matplotlib.pyplot as plt
MATPLOTLIB_AVAILABLE = True
except ImportError:
MATPLOTLIB_AVAILABLE = False
logger = logging.getLogger(__name__)
class SecurityError(Exception):
"""Raised when code contains potentially dangerous operations."""
pass
class ExecutionTimeoutError(Exception):
"""Raised when code execution exceeds timeout limit."""
pass
class CodeSecurityValidator:
"""Validates Python code for security risks before execution."""
# Dangerous imports and functions to block
BLOCKED_IMPORTS = {
'os', 'sys', 'subprocess', 'shutil', 'glob', 'pickle', 'marshal',
'importlib', '__import__', 'eval', 'exec', 'compile', 'open',
'file', 'input', 'raw_input', 'reload', 'vars', 'locals', 'globals',
'dir', 'hasattr', 'getattr', 'setattr', 'delattr', 'callable',
'socket', 'urllib', 'requests', 'http', 'ftplib', 'smtplib',
'telnetlib', 'poplib', 'imaplib', 'nntplib', 'ssl', 'hashlib',
'hmac', 'secrets', 'random', 'tempfile', 'threading', 'multiprocessing'
}
BLOCKED_FUNCTIONS = {
'eval', 'exec', 'compile', '__import__', 'open', 'file', 'input',
'raw_input', 'reload', 'vars', 'locals', 'globals', 'dir',
'hasattr', 'getattr', 'setattr', 'delattr', 'callable'
}
BLOCKED_ATTRIBUTES = {
'__class__', '__bases__', '__subclasses__', '__mro__', '__globals__',
'__code__', '__func__', '__self__', '__module__', '__dict__',
'__getattribute__', '__setattr__', '__delattr__', '__reduce__',
'__reduce_ex__', '__getstate__', '__setstate__'
}
def validate_code(self, code: str) -> bool:
"""
Validate Python code for security risks.
Args:
code: Python code string to validate
Returns:
True if code is safe, raises SecurityError if dangerous
"""
try:
# Parse the code into an AST
tree = ast.parse(code)
# Walk through all nodes in the AST
for node in ast.walk(tree):
self._check_node(node)
return True
except SyntaxError as e:
raise SecurityError(f"Syntax error in code: {e}")
except Exception as e:
raise SecurityError(f"Code validation failed: {e}")
def _check_node(self, node: ast.AST) -> None:
"""Check individual AST node for security risks."""
# Check imports
if isinstance(node, (ast.Import, ast.ImportFrom)):
self._check_import(node)
# Check function calls
elif isinstance(node, ast.Call):
self._check_function_call(node)
# Check attribute access
elif isinstance(node, ast.Attribute):
self._check_attribute_access(node)
# Check name access
elif isinstance(node, ast.Name):
self._check_name_access(node)
def _check_import(self, node: Union[ast.Import, ast.ImportFrom]) -> None:
"""Check import statements for dangerous modules."""
if isinstance(node, ast.Import):
for alias in node.names:
if alias.name in self.BLOCKED_IMPORTS:
raise SecurityError(f"Blocked import: {alias.name}")
elif isinstance(node, ast.ImportFrom):
if node.module and node.module in self.BLOCKED_IMPORTS:
raise SecurityError(f"Blocked import from: {node.module}")
def _check_function_call(self, node: ast.Call) -> None:
"""Check function calls for dangerous operations."""
if isinstance(node.func, ast.Name):
if node.func.id in self.BLOCKED_FUNCTIONS:
raise SecurityError(f"Blocked function call: {node.func.id}")
def _check_attribute_access(self, node: ast.Attribute) -> None:
"""Check attribute access for dangerous attributes."""
if node.attr in self.BLOCKED_ATTRIBUTES:
raise SecurityError(f"Blocked attribute access: {node.attr}")
def _check_name_access(self, node: ast.Name) -> None:
"""Check name access for blocked identifiers."""
if node.id in self.BLOCKED_FUNCTIONS:
# Allow if it's being assigned to (not called)
if not isinstance(node.ctx, ast.Store):
raise SecurityError(f"Blocked name access: {node.id}")
class SecureCodeExecutor:
"""Secure Python code executor with mathematical capabilities."""
def __init__(self, timeout: int = 30, memory_limit_mb: int = 512):
"""
Initialize secure code executor.
Args:
timeout: Maximum execution time in seconds
memory_limit_mb: Maximum memory usage in MB
"""
self.timeout = timeout
self.memory_limit_mb = memory_limit_mb
self.validator = CodeSecurityValidator()
# Available libraries status
self.available_libraries = {
'numpy': NUMPY_AVAILABLE,
'pandas': PANDAS_AVAILABLE,
'scipy': SCIPY_AVAILABLE,
'sympy': SYMPY_AVAILABLE,
'matplotlib': MATPLOTLIB_AVAILABLE
}
logger.info(f"SecureCodeExecutor initialized with {timeout}s timeout, {memory_limit_mb}MB limit")
logger.info(f"Available libraries: {[lib for lib, avail in self.available_libraries.items() if avail]}")
def execute_code(self, code: str, return_output: bool = True) -> Dict[str, Any]:
"""
Execute Python code securely and return results.
Args:
code: Python code to execute
return_output: Whether to capture and return output
Returns:
Dictionary with execution results
"""
start_time = time.time()
try:
# Validate code security
self.validator.validate_code(code)
# Prepare execution environment
execution_result = self._execute_in_subprocess(code, return_output)
execution_time = time.time() - start_time
return {
'success': True,
'result': execution_result.get('result'),
'output': execution_result.get('output', ''),
'error': None,
'execution_time': execution_time,
'libraries_used': self._detect_libraries_used(code)
}
except SecurityError as e:
return {
'success': False,
'result': None,
'output': '',
'error': f"Security violation: {e}",
'execution_time': time.time() - start_time,
'libraries_used': []
}
except ExecutionTimeoutError as e:
return {
'success': False,
'result': None,
'output': '',
'error': f"Execution timeout: {e}",
'execution_time': self.timeout,
'libraries_used': []
}
except Exception as e:
return {
'success': False,
'result': None,
'output': '',
'error': f"Execution error: {e}",
'execution_time': time.time() - start_time,
'libraries_used': []
}
def _execute_in_subprocess(self, code: str, return_output: bool) -> Dict[str, Any]:
"""Execute code in a secure subprocess."""
# Create temporary file for code execution
with tempfile.NamedTemporaryFile(mode='w', suffix='.py', delete=False) as f:
# Prepare safe execution environment
safe_code = self._prepare_safe_code(code, return_output)
f.write(safe_code)
temp_file = f.name
try:
# Execute in subprocess with timeout and resource limits
result = subprocess.run(
[sys.executable, temp_file],
capture_output=True,
text=True,
timeout=self.timeout,
cwd=tempfile.gettempdir() # Run in temp directory
)
if result.returncode == 0:
# Parse output
output_lines = result.stdout.strip().split('\n')
if return_output and output_lines:
# Last line should be the result if we added result capture
if output_lines[-1].startswith('RESULT:'):
result_str = output_lines[-1][7:] # Remove 'RESULT:' prefix
output = '\n'.join(output_lines[:-1])
try:
# Try to parse as JSON for complex types
parsed_result = json.loads(result_str)
except:
# Fall back to string result
parsed_result = result_str
return {
'result': parsed_result,
'output': output
}
else:
return {
'result': None,
'output': result.stdout
}
else:
return {
'result': None,
'output': result.stdout
}
else:
raise Exception(f"Code execution failed: {result.stderr}")
except subprocess.TimeoutExpired:
raise ExecutionTimeoutError(f"Code execution exceeded {self.timeout} seconds")
finally:
# Clean up temporary file
try:
os.unlink(temp_file)
except:
pass
def _prepare_safe_code(self, code: str, capture_result: bool) -> str:
"""Prepare code for safe execution with necessary imports and result capture."""
safe_imports = []
# Add available mathematical libraries
if NUMPY_AVAILABLE:
safe_imports.append("import numpy as np")
if PANDAS_AVAILABLE:
safe_imports.append("import pandas as pd")
if SCIPY_AVAILABLE:
safe_imports.append("import scipy")
safe_imports.append("from scipy import stats, optimize, integrate, linalg")
if SYMPY_AVAILABLE:
safe_imports.append("import sympy as sp")
safe_imports.append("from sympy import symbols, solve, diff, integrate as sp_integrate, simplify, expand, factor")
if MATPLOTLIB_AVAILABLE:
safe_imports.append("import matplotlib")
safe_imports.append("matplotlib.use('Agg')")
safe_imports.append("import matplotlib.pyplot as plt")
# Add basic math and other safe imports
safe_imports.extend([
"import math",
"import cmath",
"import decimal",
"import fractions",
"import statistics",
"import itertools",
"import functools",
"import operator",
"import json"
])
# Prepare the complete code
complete_code = '\n'.join(safe_imports) + '\n\n'
if capture_result:
# Wrap user code to capture the last expression result
complete_code += '''
# User code execution
import sys
from io import StringIO
# Capture stdout
old_stdout = sys.stdout
sys.stdout = captured_output = StringIO()
try:
# Execute user code and capture result
user_code = """''' + code.replace('"""', '\\"\\"\\"') + '''"""
# Execute the code
exec(user_code)
# Try to capture the result of the last expression
import ast
try:
tree = ast.parse(user_code)
if tree.body and isinstance(tree.body[-1], ast.Expr):
# Last statement is an expression, evaluate it
last_expr = ast.Expression(tree.body[-1].value)
result = eval(compile(last_expr, '<string>', 'eval'))
print(f"RESULT:{json.dumps(result) if isinstance(result, (int, float, str, list, dict, bool)) else str(result)}")
else:
print("RESULT:None")
except:
print("RESULT:None")
finally:
# Restore stdout and print captured output
sys.stdout = old_stdout
output = captured_output.getvalue()
if output:
print(output, end='')
'''
else:
complete_code += code
return complete_code
def _detect_libraries_used(self, code: str) -> List[str]:
"""Detect which mathematical libraries are used in the code."""
libraries_used = []
# Simple detection based on import statements and usage
if 'numpy' in code or 'np.' in code:
libraries_used.append('numpy')
if 'pandas' in code or 'pd.' in code:
libraries_used.append('pandas')
if 'scipy' in code:
libraries_used.append('scipy')
if 'sympy' in code or 'sp.' in code:
libraries_used.append('sympy')
if 'matplotlib' in code or 'plt.' in code:
libraries_used.append('matplotlib')
if 'math.' in code:
libraries_used.append('math')
return libraries_used
class CodeExecutionTool:
"""AGNO-compatible tool for secure Python code execution."""
def __init__(self, timeout: int = 30, memory_limit_mb: int = 512):
"""Initialize the code execution tool."""
self.executor = SecureCodeExecutor(timeout, memory_limit_mb)
self.available = True
logger.info("CodeExecutionTool initialized successfully")
def execute_python_code(self, code: str) -> str:
"""
Execute Python code and return the result.
Args:
code: Python code to execute
Returns:
Formatted result string
"""
result = self.executor.execute_code(code, return_output=True)
if result['success']:
output_parts = []
if result['output']:
output_parts.append(f"Output:\n{result['output']}")
if result['result'] is not None:
output_parts.append(f"Result: {result['result']}")
if result['libraries_used']:
output_parts.append(f"Libraries used: {', '.join(result['libraries_used'])}")
output_parts.append(f"Execution time: {result['execution_time']:.3f}s")
return '\n'.join(output_parts)
else:
return f"Error: {result['error']}"
def run_mathematical_computation(self, expression: str) -> str:
"""
Run a mathematical computation using available libraries.
Args:
expression: Mathematical expression or computation
Returns:
Computation result
"""
# Prepare code for mathematical computation
code = f"""
# Mathematical computation
result = {expression}
print(f"Computation: {expression}")
print(f"Result: {{result}}")
result
"""
return self.execute_python_code(code)
def analyze_numerical_data(self, data: str, operation: str = "basic_stats") -> str:
"""
Analyze numerical data using pandas and numpy.
Args:
data: Data as string (comma-separated values or JSON)
operation: Type of analysis to perform
Returns:
Analysis results
"""
code = f"""
import json
# Parse data
try:
data = json.loads('{data}')
except:
data = [float(x.strip()) for x in '{data}'.split(',') if x.strip()]
# Convert to numpy array for analysis
data_array = np.array(data)
# Perform analysis
if '{operation}' == 'basic_stats':
result = {{
'mean': float(np.mean(data_array)),
'median': float(np.median(data_array)),
'std': float(np.std(data_array)),
'min': float(np.min(data_array)),
'max': float(np.max(data_array)),
'sum': float(np.sum(data_array)),
'count': len(data_array)
}}
elif '{operation}' == 'advanced_stats':
result = {{
'mean': float(np.mean(data_array)),
'variance': float(np.var(data_array)),
'skewness': float(stats.skew(data_array)) if 'stats' in globals() else 'N/A',
'kurtosis': float(stats.kurtosis(data_array)) if 'stats' in globals() else 'N/A',
'percentiles': {{
'25th': float(np.percentile(data_array, 25)),
'50th': float(np.percentile(data_array, 50)),
'75th': float(np.percentile(data_array, 75))
}}
}}
else:
result = 'Unknown operation'
print(f"Data analysis ({operation}):")
print(f"Data: {{data}}")
print(f"Results: {{result}}")
result
"""
return self.execute_python_code(code)
def get_status(self) -> Dict[str, Any]:
"""Get tool status and capabilities."""
return {
'available': self.available,
'timeout': self.executor.timeout,
'memory_limit_mb': self.executor.memory_limit_mb,
'available_libraries': self.executor.available_libraries,
'security_features': [
'AST-based code validation',
'Subprocess isolation',
'Import restrictions',
'Function call blocking',
'Attribute access control',
'Timeout protection',
'Memory limits'
]
}
# AGNO tool registration functions
def get_code_execution_tools():
"""Get code execution tools for AGNO registration."""
tool = CodeExecutionTool()
# Return tool methods that can be called by AGNO
return [
{
'name': 'execute_python_code',
'function': tool.execute_python_code,
'description': 'Execute Python code securely with mathematical libraries'
},
{
'name': 'run_mathematical_computation',
'function': tool.run_mathematical_computation,
'description': 'Perform mathematical computations using numpy, scipy, sympy'
},
{
'name': 'analyze_numerical_data',
'function': tool.analyze_numerical_data,
'description': 'Analyze numerical data with statistical operations'
}
]
if __name__ == "__main__":
# Test the code execution tool
tool = CodeExecutionTool()
# Test basic mathematical computation
test_code = """
import math
result = math.sqrt(2) * math.pi
print(f"Square root of 2 times pi: {result}")
result
"""
print("Testing CodeExecutionTool:")
print("=" * 50)
result = tool.execute_python_code(test_code)
print(result)
print("=" * 50)
# Test status
status = tool.get_status()
print("Tool Status:")
print(json.dumps(status, indent=2))