""" Video Content Analyzer for GAIA Agent - Phase 5 Provides comprehensive video content analysis including scene segmentation, temporal patterns, and content summarization. Features: - Scene segmentation and analysis - Temporal pattern recognition - Object interaction analysis - Content summarization and reporting - Key frame identification and extraction - Video metadata analysis """ import os import logging import cv2 import numpy as np from typing import Dict, Any, List, Optional, Tuple import json from datetime import datetime, timedelta from pathlib import Path import tempfile # Configure logging logger = logging.getLogger(__name__) class VideoContentAnalyzer: """Advanced video content analyzer for scene understanding and temporal analysis.""" def __init__(self): """Initialize the video content analyzer.""" self.available = True self.temp_dir = tempfile.mkdtemp() # Analysis parameters self.scene_change_threshold = 0.3 self.keyframe_interval = 30 # Extract keyframe every 30 frames self.min_scene_duration = 2.0 # Minimum scene duration in seconds self.max_scenes = 50 # Maximum number of scenes to analyze # Initialize analysis components self._init_scene_analyzer() self._init_temporal_analyzer() logger.info(f"📹 Video Content Analyzer initialized - Available: {self.available}") def _init_scene_analyzer(self): """Initialize scene analysis components.""" try: # Scene change detection parameters self.scene_detector_params = { 'histogram_bins': 32, 'color_spaces': ['HSV', 'RGB'], 'comparison_methods': [cv2.HISTCMP_CORREL, cv2.HISTCMP_CHISQR], 'motion_threshold': 0.1 } logger.info("✅ Scene analyzer initialized") except Exception as e: logger.warning(f"⚠️ Scene analyzer initialization failed: {e}") def _init_temporal_analyzer(self): """Initialize temporal analysis components.""" try: # Temporal pattern analysis parameters self.temporal_params = { 'pattern_window': 10, # Analyze patterns over 10 frame windows 'smoothing_factor': 0.3, 'trend_threshold': 0.1, 'periodicity_detection': True } logger.info("✅ Temporal analyzer initialized") except Exception as e: logger.warning(f"⚠️ Temporal analyzer initialization failed: {e}") def analyze_video_content(self, video_path: str, object_detections: List[List[Dict[str, Any]]] = None, question: str = None) -> Dict[str, Any]: """ Perform comprehensive video content analysis. Args: video_path: Path to video file object_detections: Optional pre-computed object detections per frame question: Optional question to guide analysis Returns: Comprehensive content analysis results """ try: logger.info(f"📹 Starting video content analysis for: {video_path}") # Extract video metadata metadata = self._extract_video_metadata(video_path) # Perform scene segmentation scenes = self._segment_scenes(video_path) # Extract key frames keyframes = self._extract_keyframes(video_path, scenes) # Analyze temporal patterns temporal_analysis = self._analyze_temporal_patterns( video_path, object_detections, scenes ) # Perform content summarization content_summary = self._summarize_content( scenes, keyframes, temporal_analysis, object_detections ) # Generate interaction analysis interaction_analysis = self._analyze_object_interactions( object_detections, scenes ) # Create comprehensive report analysis_report = self._create_content_report( metadata, scenes, keyframes, temporal_analysis, content_summary, interaction_analysis, question ) return analysis_report except Exception as e: logger.error(f"❌ Video content analysis failed: {e}") return { 'success': False, 'error': f'Content analysis failed: {str(e)}' } def _extract_video_metadata(self, video_path: str) -> Dict[str, Any]: """Extract comprehensive video metadata.""" try: cap = cv2.VideoCapture(video_path) if not cap.isOpened(): raise Exception("Failed to open video file") # Basic properties fps = cap.get(cv2.CAP_PROP_FPS) frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) duration = frame_count / fps if fps > 0 else 0 # Additional properties fourcc = int(cap.get(cv2.CAP_PROP_FOURCC)) codec = "".join([chr((fourcc >> 8 * i) & 0xFF) for i in range(4)]) cap.release() metadata = { 'filename': os.path.basename(video_path), 'duration_seconds': duration, 'fps': fps, 'frame_count': frame_count, 'resolution': {'width': width, 'height': height}, 'aspect_ratio': width / height if height > 0 else 1.0, 'codec': codec, 'file_size': os.path.getsize(video_path) if os.path.exists(video_path) else 0, 'analysis_timestamp': datetime.now().isoformat() } logger.info(f"📊 Video metadata extracted: {duration:.1f}s, {width}x{height}, {fps:.1f} FPS") return metadata except Exception as e: logger.error(f"❌ Failed to extract video metadata: {e}") return {} def _segment_scenes(self, video_path: str) -> List[Dict[str, Any]]: """Segment video into distinct scenes based on visual changes.""" try: cap = cv2.VideoCapture(video_path) if not cap.isOpened(): raise Exception("Failed to open video file") scenes = [] prev_hist = None scene_start = 0 frame_count = 0 fps = cap.get(cv2.CAP_PROP_FPS) scene_id = 0 while cap.isOpened(): ret, frame = cap.read() if not ret: break # Calculate histogram for scene change detection hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) hist = cv2.calcHist([hsv], [0, 1, 2], None, [self.scene_detector_params['histogram_bins']] * 3, [0, 180, 0, 256, 0, 256]) # Detect scene change if prev_hist is not None: correlation = cv2.compareHist(hist, prev_hist, cv2.HISTCMP_CORREL) if correlation < self.scene_change_threshold: # Scene change detected scene_end = frame_count scene_duration = (scene_end - scene_start) / fps if scene_duration >= self.min_scene_duration: scene = { 'id': scene_id, 'start_frame': scene_start, 'end_frame': scene_end, 'start_time': scene_start / fps, 'end_time': scene_end / fps, 'duration': scene_duration, 'frame_count': scene_end - scene_start } scenes.append(scene) scene_id += 1 if len(scenes) >= self.max_scenes: break scene_start = frame_count prev_hist = hist frame_count += 1 # Add final scene if scene_start < frame_count: scene_duration = (frame_count - scene_start) / fps if scene_duration >= self.min_scene_duration: scene = { 'id': scene_id, 'start_frame': scene_start, 'end_frame': frame_count, 'start_time': scene_start / fps, 'end_time': frame_count / fps, 'duration': scene_duration, 'frame_count': frame_count - scene_start } scenes.append(scene) cap.release() logger.info(f"🎬 Scene segmentation complete: {len(scenes)} scenes detected") return scenes except Exception as e: logger.error(f"❌ Scene segmentation failed: {e}") return [] def _extract_keyframes(self, video_path: str, scenes: List[Dict[str, Any]]) -> List[Dict[str, Any]]: """Extract representative keyframes from video scenes.""" try: cap = cv2.VideoCapture(video_path) if not cap.isOpened(): raise Exception("Failed to open video file") keyframes = [] fps = cap.get(cv2.CAP_PROP_FPS) for scene in scenes: # Extract keyframes from each scene scene_keyframes = [] # Extract keyframe from middle of scene mid_frame = (scene['start_frame'] + scene['end_frame']) // 2 cap.set(cv2.CAP_PROP_POS_FRAMES, mid_frame) ret, frame = cap.read() if ret: keyframe = { 'scene_id': scene['id'], 'frame_number': mid_frame, 'timestamp': mid_frame / fps, 'type': 'scene_representative', 'frame_data': frame, 'visual_features': self._extract_visual_features(frame) } scene_keyframes.append(keyframe) # Extract additional keyframes for longer scenes if scene['duration'] > 10: # For scenes longer than 10 seconds # Extract keyframes at 1/4 and 3/4 points for fraction in [0.25, 0.75]: frame_pos = int(scene['start_frame'] + fraction * (scene['end_frame'] - scene['start_frame'])) cap.set(cv2.CAP_PROP_POS_FRAMES, frame_pos) ret, frame = cap.read() if ret: keyframe = { 'scene_id': scene['id'], 'frame_number': frame_pos, 'timestamp': frame_pos / fps, 'type': 'temporal_sample', 'frame_data': frame, 'visual_features': self._extract_visual_features(frame) } scene_keyframes.append(keyframe) keyframes.extend(scene_keyframes) cap.release() logger.info(f"🖼️ Keyframe extraction complete: {len(keyframes)} keyframes extracted") return keyframes except Exception as e: logger.error(f"❌ Keyframe extraction failed: {e}") return [] def _extract_visual_features(self, frame: np.ndarray) -> Dict[str, Any]: """Extract visual features from a frame.""" try: features = {} # Color histogram hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) hist_h = cv2.calcHist([hsv], [0], None, [32], [0, 180]) hist_s = cv2.calcHist([hsv], [1], None, [32], [0, 256]) hist_v = cv2.calcHist([hsv], [2], None, [32], [0, 256]) features['color_histogram'] = { 'hue': hist_h.flatten().tolist(), 'saturation': hist_s.flatten().tolist(), 'value': hist_v.flatten().tolist() } # Edge density gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) edges = cv2.Canny(gray, 50, 150) edge_density = np.sum(edges > 0) / (edges.shape[0] * edges.shape[1]) features['edge_density'] = float(edge_density) # Brightness and contrast features['brightness'] = float(np.mean(gray)) features['contrast'] = float(np.std(gray)) # Dominant colors features['dominant_colors'] = self._get_dominant_colors(frame) return features except Exception as e: logger.error(f"❌ Visual feature extraction failed: {e}") return {} def _get_dominant_colors(self, frame: np.ndarray, k: int = 3) -> List[List[int]]: """Extract dominant colors from frame using k-means clustering.""" try: # Reshape frame to list of pixels pixels = frame.reshape(-1, 3) # Use k-means to find dominant colors from sklearn.cluster import KMeans kmeans = KMeans(n_clusters=k, random_state=42, n_init=10) kmeans.fit(pixels) # Get dominant colors colors = kmeans.cluster_centers_.astype(int) return colors.tolist() except ImportError: # Fallback without sklearn return [[128, 128, 128]] # Gray as default except Exception as e: logger.error(f"❌ Dominant color extraction failed: {e}") return [[128, 128, 128]] def _analyze_temporal_patterns(self, video_path: str, object_detections: List[List[Dict[str, Any]]] = None, scenes: List[Dict[str, Any]] = None) -> Dict[str, Any]: """Analyze temporal patterns in video content.""" try: temporal_analysis = { 'motion_patterns': [], 'object_appearance_patterns': [], 'scene_transition_patterns': [], 'activity_levels': [], 'periodicity': {} } if not object_detections: return temporal_analysis # Analyze motion patterns motion_levels = [] for frame_detections in object_detections: # Calculate motion level based on number and size of objects motion_level = len(frame_detections) if frame_detections: avg_area = np.mean([det.get('area', 0) for det in frame_detections]) motion_level += avg_area / 10000 # Normalize area contribution motion_levels.append(motion_level) temporal_analysis['motion_patterns'] = motion_levels # Analyze object appearance patterns object_counts_over_time = [] bird_counts_over_time = [] animal_counts_over_time = [] for frame_detections in object_detections: object_count = len(frame_detections) bird_count = sum(1 for det in frame_detections if det.get('species_type') == 'bird') animal_count = sum(1 for det in frame_detections if det.get('species_type') == 'animal') object_counts_over_time.append(object_count) bird_counts_over_time.append(bird_count) animal_counts_over_time.append(animal_count) temporal_analysis['object_appearance_patterns'] = { 'total_objects': object_counts_over_time, 'birds': bird_counts_over_time, 'animals': animal_counts_over_time } # Analyze activity levels window_size = self.temporal_params['pattern_window'] activity_levels = [] for i in range(0, len(motion_levels), window_size): window = motion_levels[i:i+window_size] if window: activity_level = { 'start_frame': i, 'end_frame': min(i + window_size, len(motion_levels)), 'avg_motion': np.mean(window), 'max_motion': np.max(window), 'motion_variance': np.var(window) } activity_levels.append(activity_level) temporal_analysis['activity_levels'] = activity_levels # Detect periodicity in object appearances if len(bird_counts_over_time) > 20: # Need sufficient data temporal_analysis['periodicity'] = self._detect_periodicity( bird_counts_over_time, animal_counts_over_time ) logger.info("📈 Temporal pattern analysis complete") return temporal_analysis except Exception as e: logger.error(f"❌ Temporal pattern analysis failed: {e}") return {} def _detect_periodicity(self, bird_counts: List[int], animal_counts: List[int]) -> Dict[str, Any]: """Detect periodic patterns in object appearances.""" try: periodicity = { 'bird_patterns': {}, 'animal_patterns': {}, 'combined_patterns': {} } # Simple autocorrelation-based periodicity detection def autocorrelation(signal, max_lag=50): signal = np.array(signal) n = len(signal) signal = signal - np.mean(signal) autocorr = [] for lag in range(min(max_lag, n//2)): if n - lag > 0: corr = np.corrcoef(signal[:-lag], signal[lag:])[0, 1] autocorr.append(corr if not np.isnan(corr) else 0) else: autocorr.append(0) return autocorr # Analyze bird count periodicity bird_autocorr = autocorrelation(bird_counts) if bird_autocorr: max_corr_idx = np.argmax(bird_autocorr[1:]) + 1 # Skip lag 0 periodicity['bird_patterns'] = { 'dominant_period': max_corr_idx, 'correlation_strength': bird_autocorr[max_corr_idx], 'is_periodic': bird_autocorr[max_corr_idx] > 0.3 } # Analyze animal count periodicity animal_autocorr = autocorrelation(animal_counts) if animal_autocorr: max_corr_idx = np.argmax(animal_autocorr[1:]) + 1 periodicity['animal_patterns'] = { 'dominant_period': max_corr_idx, 'correlation_strength': animal_autocorr[max_corr_idx], 'is_periodic': animal_autocorr[max_corr_idx] > 0.3 } return periodicity except Exception as e: logger.error(f"❌ Periodicity detection failed: {e}") return {} def _summarize_content(self, scenes: List[Dict[str, Any]], keyframes: List[Dict[str, Any]], temporal_analysis: Dict[str, Any], object_detections: List[List[Dict[str, Any]]] = None) -> Dict[str, Any]: """Generate comprehensive content summary.""" try: summary = { 'overview': {}, 'scene_summary': [], 'key_moments': [], 'content_highlights': [], 'statistical_summary': {} } # Overview total_duration = sum(scene.get('duration', 0) for scene in scenes) summary['overview'] = { 'total_scenes': len(scenes), 'total_duration': total_duration, 'avg_scene_duration': total_duration / len(scenes) if scenes else 0, 'keyframes_extracted': len(keyframes) } # Scene summary for scene in scenes: scene_summary = { 'scene_id': scene['id'], 'duration': scene['duration'], 'description': f"Scene {scene['id'] + 1}: {scene['duration']:.1f}s", 'activity_level': 'unknown' } # Determine activity level from temporal analysis if temporal_analysis.get('activity_levels'): scene_start_frame = scene['start_frame'] scene_end_frame = scene['end_frame'] relevant_activities = [ activity for activity in temporal_analysis['activity_levels'] if (activity['start_frame'] <= scene_end_frame and activity['end_frame'] >= scene_start_frame) ] if relevant_activities: avg_motion = np.mean([a['avg_motion'] for a in relevant_activities]) if avg_motion > 2: scene_summary['activity_level'] = 'high' elif avg_motion > 1: scene_summary['activity_level'] = 'medium' else: scene_summary['activity_level'] = 'low' summary['scene_summary'].append(scene_summary) # Key moments (high activity periods) if temporal_analysis.get('activity_levels'): high_activity_moments = [ activity for activity in temporal_analysis['activity_levels'] if activity['avg_motion'] > 2 ] summary['key_moments'] = [ { 'timestamp': moment['start_frame'] / 30, # Assume 30 FPS 'duration': (moment['end_frame'] - moment['start_frame']) / 30, 'activity_level': moment['avg_motion'], 'description': f"High activity period: {moment['avg_motion']:.1f}" } for moment in high_activity_moments[:5] # Top 5 moments ] # Statistical summary if object_detections: all_detections = [det for frame_dets in object_detections for det in frame_dets] species_counts = {} for detection in all_detections: species = detection.get('species_type', 'unknown') species_counts[species] = species_counts.get(species, 0) + 1 summary['statistical_summary'] = { 'total_detections': len(all_detections), 'species_distribution': species_counts, 'avg_detections_per_frame': len(all_detections) / len(object_detections) if object_detections else 0 } logger.info("📋 Content summarization complete") return summary except Exception as e: logger.error(f"❌ Content summarization failed: {e}") return {} def _analyze_object_interactions(self, object_detections: List[List[Dict[str, Any]]] = None, scenes: List[Dict[str, Any]] = None) -> Dict[str, Any]: """Analyze interactions between detected objects.""" try: interaction_analysis = { 'proximity_interactions': [], 'temporal_interactions': [], 'species_interactions': {}, 'interaction_summary': {} } if not object_detections: return interaction_analysis # Analyze proximity interactions within frames for frame_idx, frame_detections in enumerate(object_detections): if len(frame_detections) > 1: # Check all pairs of objects in the frame for i, obj1 in enumerate(frame_detections): for j, obj2 in enumerate(frame_detections[i+1:], i+1): distance = self._calculate_object_distance(obj1, obj2) if distance < 100: # Close proximity threshold interaction = { 'frame': frame_idx, 'timestamp': frame_idx / 30, # Assume 30 FPS 'object1': obj1.get('class', 'unknown'), 'object2': obj2.get('class', 'unknown'), 'distance': distance, 'interaction_type': 'proximity' } interaction_analysis['proximity_interactions'].append(interaction) # Analyze species interactions species_pairs = {} for interaction in interaction_analysis['proximity_interactions']: obj1_type = interaction['object1'] obj2_type = interaction['object2'] pair_key = tuple(sorted([obj1_type, obj2_type])) if pair_key not in species_pairs: species_pairs[pair_key] = [] species_pairs[pair_key].append(interaction) interaction_analysis['species_interactions'] = { f"{pair[0]}-{pair[1]}": { 'interaction_count': len(interactions), 'avg_distance': np.mean([i['distance'] for i in interactions]), 'duration': len(interactions) / 30 # Approximate duration } for pair, interactions in species_pairs.items() } # Interaction summary interaction_analysis['interaction_summary'] = { 'total_proximity_interactions': len(interaction_analysis['proximity_interactions']), 'unique_species_pairs': len(species_pairs), 'most_interactive_pair': max(species_pairs.keys(), key=lambda x: len(species_pairs[x])) if species_pairs else None } logger.info("🤝 Object interaction analysis complete") return interaction_analysis except Exception as e: logger.error(f"❌ Object interaction analysis failed: {e}") return {} def _calculate_object_distance(self, obj1: Dict[str, Any], obj2: Dict[str, Any]) -> float: """Calculate distance between two objects based on their centers.""" try: center1 = obj1.get('center', [0, 0]) center2 = obj2.get('center', [0, 0]) distance = np.sqrt((center1[0] - center2[0])**2 + (center1[1] - center2[1])**2) return float(distance) except Exception as e: logger.error(f"❌ Distance calculation failed: {e}") return float('inf') def _create_content_report(self, metadata: Dict[str, Any], scenes: List[Dict[str, Any]], keyframes: List[Dict[str, Any]], temporal_analysis: Dict[str, Any], content_summary: Dict[str, Any], interaction_analysis: Dict[str, Any], question: str = None) -> Dict[str, Any]: """Create comprehensive content analysis report.""" try: report = { 'success': True, 'analysis_timestamp': datetime.now().isoformat(), 'question': question, 'metadata': metadata, 'content_analysis': { 'scenes': scenes, 'keyframes': [ {k: v for k, v in kf.items() if k != 'frame_data'} # Exclude frame data for kf in keyframes ], 'temporal_patterns': temporal_analysis, 'content_summary': content_summary, 'interactions': interaction_analysis }, 'insights': [], 'recommendations': [] } # Generate insights insights = [] # Scene insights if scenes: avg_scene_duration = np.mean([s['duration'] for s in scenes]) insights.append(f"Video contains {len(scenes)} distinct scenes with average duration of {avg_scene_duration:.1f}s") # Activity insights if temporal_analysis.get('activity_levels'): high_activity_count = sum(1 for a in temporal_analysis['activity_levels'] if a['avg_motion'] > 2) insights.append(f"Detected {high_activity_count} high-activity periods in the video") # Interaction insights if interaction_analysis.get('interaction_summary', {}).get('total_proximity_interactions', 0) > 0: total_interactions = interaction_analysis['interaction_summary']['total_proximity_interactions'] insights.append(f"Found {total_interactions} object proximity interactions") report['insights'] = insights # Generate recommendations recommendations = [] if question and 'bird' in question.lower(): if temporal_analysis.get('object_appearance_patterns', {}).get('birds'): max_birds = max(temporal_analysis['object_appearance_patterns']['birds']) recommendations.append(f"Maximum simultaneous birds detected: {max_birds}") if len(scenes) > 10: recommendations.append("Video has many scene changes - consider analyzing key scenes only") report['recommendations'] = recommendations logger.info("📊 Content analysis report generated successfully") return report except Exception as e: logger.error(f"❌ Failed to create content report: {e}") return { 'success': False, 'error': f'Failed to create content report: {str(e)}' } def get_capabilities(self) -> Dict[str, Any]: """Get video content analyzer capabilities.""" return { 'available': self.available, 'scene_change_threshold': self.scene_change_threshold, 'keyframe_interval': self.keyframe_interval, 'min_scene_duration': self.min_scene_duration, 'max_scenes': self.max_scenes, 'features': [ 'Scene segmentation', 'Keyframe extraction', 'Temporal pattern analysis', 'Object interaction analysis', 'Content summarization', 'Visual feature extraction', 'Activity level detection', 'Periodicity detection' ] } # Factory function for creating content analyzer def create_video_content_analyzer() -> VideoContentAnalyzer: """Create and return a video content analyzer instance.""" return VideoContentAnalyzer() if __name__ == "__main__": # Test the content analyzer analyzer = VideoContentAnalyzer() print(f"Content analyzer available: {analyzer.available}") print(f"Capabilities: {json.dumps(analyzer.get_capabilities(), indent=2)}")