File size: 1,260 Bytes
b90cf84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#
#

import  gradio      as      gr
from    textblob    import  TextBlob

def sentiment_analysis(text: str) -> dict:
    """
    Analyze the sentiment of the given text.

    Args:
        text (str): The text to analyze

    Returns:
        dict: A dictionary containing polarity, subjectivity, and assessment
    """
    blob        = TextBlob(text)
    sentiment   = blob.sentiment

    _polarity       = round(sentiment.polarity,       2)            # -1 (negative) to 1 (positive)    
    _subjectivity   = round(sentiment.subjectivity,   2)            # 0 (objective) to 1 (subjective)
    _assessment     =   "positive" if _polarity > 0 else \
                        "negative" if _polarity < 0 else "neutral"

    return {
        "polarity":     _polarity,     
        "subjectivity": _subjectivity,     
        "assessment":   _assessment,
    }

# Create the Gradio interface
demo = gr.Interface(
    fn          = sentiment_analysis,
    inputs      = gr.Textbox(placeholder="Enter text to analyze..."),
    outputs     = gr.JSON(),
    title       = "Text Sentiment Analysis",
    description = "Analyze the sentiment of text using TextBlob" 
)

# Launch the interface and MCP server
if __name__ == "__main__":
    demo.launch(mcp_server=True)