Spaces:
Sleeping
Sleeping
from langchain_core.tools import tool | |
from langchain.tools.retriever import create_retriever_tool | |
from langchain_community.document_loaders import WikipediaLoader | |
from langchain_community.tools.tavily_search import TavilySearchResults | |
from langchain_community.document_loaders import ArxivLoader | |
from langchain_core.messages import HumanMessage, SystemMessage | |
from langchain_ollama import ChatOllama | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
from langchain_huggingface import HuggingFaceEmbeddings, ChatHuggingFace, HuggingFaceEndpoint | |
from langgraph.graph import START, StateGraph, MessagesState | |
# from langchain_chroma import Chroma | |
import faiss | |
from langchain_community.docstore.in_memory import InMemoryDocstore | |
from langchain_community.vectorstores import FAISS | |
from langgraph.prebuilt import ToolNode | |
from langgraph.prebuilt import tools_condition | |
import os | |
from dotenv import load_dotenv | |
load_dotenv() | |
def multiply(a: int, b: int) -> int: | |
"""Multiply two numbers and return the result. | |
Args: | |
a (int): The first number. | |
b (int): The second number. | |
Returns: | |
int: The product of the two numbers. | |
""" | |
return a * b | |
def add(a: int, b: int) -> int: | |
"""Add two numbers and return the result. | |
Args: | |
a (int): The first number. | |
b (int): The second number. | |
Returns: | |
int: The sum of the two numbers. | |
""" | |
return a + b | |
def subtract(a: int, b: int) -> int: | |
"""Subtract two numbers and return the result. | |
Args: | |
a (int): The first number. | |
b (int): The second number. | |
Returns: | |
int: The difference between the two numbers. | |
""" | |
return a - b | |
def divide(a: int, b: int) -> int: | |
"""Divide two numbers and return the result. | |
Args: | |
a (int): The first number. | |
b (int): The second number. | |
Returns: | |
int: The quotient of the two numbers. | |
""" | |
return a / b | |
def modulus(a: int, b: int) -> int: | |
"""Calculate the modulus of two numbers and return the result. | |
Args: | |
a (int): The first number. | |
b (int): The second number. | |
Returns: | |
int: The modulus of the two numbers. | |
""" | |
return a % b | |
def wiki_search(query: str) -> str: | |
"""Search Wikipedia for a given query and return the top result. | |
Args: | |
query (str): The search query. | |
""" | |
search_docs = WikipediaLoader(query, load_max_docs=2).load() | |
formatted_search_docs = '\n\n---\n\n'.join( | |
[ | |
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}">\n{doc.page_content}\n</Document>' for doc in search_docs | |
] | |
) | |
return {'wiki_results': formatted_search_docs} | |
def web_search(query: str) -> str: | |
"""Search Tavily for a query and return maximum 3 results | |
Args: | |
query (str): The search query. | |
""" | |
search_docs = TavilySearchResults(max_results=3).invoke(query) | |
formatted_search_docs = '\n\n---\n\n'.join( | |
[ | |
f'<Document source="{doc["url"]}" page="{doc.get("title", "")}">\n{doc.get("content", "")}\n</Document>' for doc in search_docs | |
] | |
) | |
return {'web_results': formatted_search_docs} | |
def arvix_search(query: str) -> str: | |
"""Search Arvix for a query and return maximum 3 results | |
Args: | |
query (str): The search query. | |
""" | |
search_docs = ArxivLoader(query, load_max_docs=3).load() | |
formatted_search_docs = '\n\n---\n\n'.join( | |
[ | |
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}">\n{doc.page_content}\n</Document>' for doc in search_docs | |
] | |
) | |
return {'arvix_results': formatted_search_docs} | |
# load the system prompt from the file | |
with open("system_prompt.txt", "r", encoding="utf-8") as f: | |
system_prompt = f.read() | |
# System message | |
sys_msg = SystemMessage(content=system_prompt) | |
# Retriever | |
embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-small-en-v1.5") | |
# vector_store = Chroma( | |
# collection_name="demo_collection", | |
# embedding_function=embeddings, | |
# persist_directory="./chroma_langchain_db", | |
# ) | |
embedding_dim = len(embeddings.embed_query("hello world")) | |
index = faiss.IndexFlatL2(embedding_dim) | |
vector_store = FAISS( | |
embedding_function=embeddings, | |
index=index, | |
docstore=InMemoryDocstore(), | |
index_to_docstore_id={}, | |
) | |
create_retriever_tool = create_retriever_tool( | |
retriever= vector_store.as_retriever(), | |
name='Question Search', | |
description='A tool to retrieve similar question from vector store.' | |
) | |
tools = [ | |
multiply, | |
add, | |
subtract, | |
modulus, | |
wiki_search, | |
web_search, | |
arvix_search | |
] | |
# build graph function | |
def build_graph(tag: str='huggingface'): | |
"""Build the graph""" | |
if tag == 'local': | |
llm = ChatOllama(model="qwen3") | |
elif tag == 'google': | |
# Google Gemini | |
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0) | |
elif tag == "huggingface": | |
llm = ChatHuggingFace( | |
llm=HuggingFaceEndpoint( | |
endpoint_url="https://api-inference.huggingface.co/models/Qwen/Qwen3-14B"), | |
temperature=0, | |
) | |
else: | |
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.") | |
# bind tools to llm | |
llm_with_tools = llm.bind_tools(tools) | |
def assistant(state: MessagesState): | |
return {'messages': [llm_with_tools.invoke(state['messages'])]} | |
def retriever(state: MessagesState): | |
similar_question = vector_store.similarity_search(state['messages'][0].content) | |
example_msg = HumanMessage( | |
content=f'' | |
) | |
return {'messages': [sys_msg] + state['messages'] + [example_msg]} | |
builder = StateGraph(MessagesState) | |
builder.add_node('retriever', retriever) | |
builder.add_node('assistant', assistant) | |
builder.add_node('tools', ToolNode(tools)) | |
builder.add_edge(START, 'retriever') | |
builder.add_edge('retriever', 'assistant') | |
builder.add_conditional_edges( | |
'assistant', | |
tools_condition | |
) | |
builder.add_edge('tools', 'assistant') | |
# builder.set_entry_point("retriever") | |
# builder.set_finish_point("retriever") | |
return builder.compile() | |
# test | |
if __name__ == "__main__": | |
question = 'When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?' | |
# build the graph | |
graph = build_graph('local') | |
# run the graph | |
messages = [HumanMessage(content=question)] | |
messages = graph.invoke({'messages': messages}) | |
for m in messages['messages']: | |
m.pretty_print() | |