import gradio as gr from transformers import AutoTokenizer, pipeline import torch # Load the model and tokenizer model = "K00B404/DeepQwenScalerPlus" tokenizer = AutoTokenizer.from_pretrained(model) # Initialize the pipeline for text generation pipeline = pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) # Function to interact with the model def generate_response(user_message): messages = [ {"role": "system", "content": "You are a reasoning coder and specialize in generating Python scripts"}, {"role": "user", "content": user_message} ] # Tokenize the input message prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) # Get the model's output outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) return outputs[0]["generated_text"] # Gradio interface iface = gr.Interface( fn=generate_response, inputs=gr.Textbox(label="Ask a Question", placeholder="Enter your question here..."), outputs=gr.Textbox(label="Generated Response"), title="DeepQwenScalerPlus Gradio App", description="Interact with the DeepQwenScalerPlus model to get Python script generation responses." ) # Launch the Gradio app iface.launch()