File size: 27,239 Bytes
8ac3922
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
import gradio as gr
import torch
import torch.nn.functional as F
from diffusers import StableDiffusionImg2ImgPipeline, DDIMScheduler
from PIL import Image
import numpy as np
from typing import List, Optional, Dict, Any
from collections import deque
import cv2
import os
import tempfile
import imageio
from datetime import datetime

class SimpleTemporalBuffer:
    """Simplified temporal buffer for SD1.5 img2img"""
    
    def __init__(self, buffer_size: int = 6):
        self.buffer_size = buffer_size
        self.frames = deque(maxlen=buffer_size)
        self.frame_embeddings = deque(maxlen=buffer_size)
        self.motion_vectors = deque(maxlen=buffer_size-1)
        
    def add_frame(self, frame: Image.Image, embedding: Optional[torch.Tensor] = None):
        """Add frame to buffer"""
        try:
            # Calculate optical flow if we have previous frames
            if len(self.frames) > 0:
                prev_frame = np.array(self.frames[-1])
                curr_frame = np.array(frame)
                
                # Convert to grayscale for optical flow
                prev_gray = cv2.cvtColor(prev_frame, cv2.COLOR_RGB2GRAY)
                curr_gray = cv2.cvtColor(curr_frame, cv2.COLOR_RGB2GRAY)
                
                # Calculate optical flow
                flow = cv2.calcOpticalFlowPyrLK(
                    prev_gray, curr_gray, 
                    np.array([[frame.width//2, frame.height//2]], dtype=np.float32),
                    None
                )[0]
                
                if flow is not None:
                    motion_magnitude = np.linalg.norm(flow[0] - [frame.width//2, frame.height//2])
                    self.motion_vectors.append(motion_magnitude)
        except Exception as e:
            print(f"Motion calculation error: {e}")
        
        self.frames.append(frame)
        if embedding is not None:
            self.frame_embeddings.append(embedding)
    
    def get_reference_frame(self) -> Optional[Image.Image]:
        """Get most recent frame as reference"""
        return self.frames[-1] if self.frames else None
    
    def get_motion_context(self) -> Dict[str, Any]:
        """Get motion context for next frame generation"""
        if len(self.motion_vectors) == 0:
            return {"has_motion": False, "predicted_motion": 0.0}
        
        # Simple motion prediction based on recent vectors
        recent_motion = list(self.motion_vectors)[-3:]  # Last 3 motions
        avg_motion = np.mean(recent_motion)
        motion_trend = recent_motion[-1] - recent_motion[0] if len(recent_motion) > 1 else 0
        
        predicted_motion = avg_motion + motion_trend * 0.5
        
        return {
            "has_motion": True,
            "current_motion": avg_motion,
            "predicted_motion": predicted_motion,
            "motion_trend": motion_trend,
            "motion_history": recent_motion
        }

class SD15FlexibleI2VGenerator:
    """Flexible I2V generator using SD1.5 img2img pipeline"""
    
    def __init__(
        self,
        model_id: str = "runwayml/stable-diffusion-v1-5",
        device: str = "cuda" if torch.cuda.is_available() else "cpu"
    ):
        self.device = device
        self.pipe = None
        self.temporal_buffer = SimpleTemporalBuffer()
        self.is_loaded = False
        
    def load_model(self):
        """Load the SD1.5 pipeline"""
        if self.is_loaded:
            return "Model already loaded"
        
        try:
            print(f"πŸš€ Loading SD1.5 pipeline on {self.device}...")
            
            # Load pipeline with DDIM scheduler for better img2img
            self.pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
                "runwayml/stable-diffusion-v1-5",
                torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
                safety_checker=None,
                requires_safety_checker=False
            )
            
            # Use DDIM for more consistent results
            self.pipe.scheduler = DDIMScheduler.from_config(self.pipe.scheduler.config)
            self.pipe = self.pipe.to(self.device)
            
            # Enable memory efficient attention
            if self.device == "cuda":
                self.pipe.enable_attention_slicing()
                try:
                    self.pipe.enable_xformers_memory_efficient_attention()
                except:
                    print("⚠️  xformers not available, using standard attention")
            
            self.is_loaded = True
            return "βœ… Model loaded successfully!"
            
        except Exception as e:
            return f"❌ Error loading model: {str(e)}"
    
    def calculate_adaptive_strength(self, motion_context: Dict[str, Any], base_strength: float = 0.75) -> float:
        """Calculate adaptive denoising strength based on motion"""
        if not motion_context.get("has_motion", False):
            return base_strength
        
        motion = motion_context["current_motion"]
        
        # More motion = less strength (preserve more of previous frame)
        # Less motion = more strength (allow more change)
        motion_factor = np.clip(motion / 50.0, 0.0, 1.0)  # Normalize motion
        adaptive_strength = base_strength * (1.0 - motion_factor * 0.3)
        
        return np.clip(adaptive_strength, 0.3, 0.9)
    
    def enhance_prompt_with_motion(self, base_prompt: str, motion_context: Dict[str, Any]) -> str:
        """Enhance prompt based on motion context"""
        if not motion_context.get("has_motion", False):
            return base_prompt
        
        motion = motion_context["current_motion"]
        trend = motion_context.get("motion_trend", 0)
        
        # Add motion descriptors based on analysis
        if motion > 30:
            if trend > 5:
                motion_desc = ", fast movement, dynamic motion, motion blur"
            else:
                motion_desc = ", steady movement, continuous motion"
        elif motion > 10:
            motion_desc = ", gentle movement, smooth transition"
        else:
            motion_desc = ", subtle movement, slight change"
        
        return base_prompt + motion_desc
    
    def blend_frames(self, current_frame: Image.Image, reference_frame: Image.Image, blend_ratio: float = 0.15) -> Image.Image:
        """Blend current frame with reference for temporal consistency"""
        current_array = np.array(current_frame, dtype=np.float32)
        reference_array = np.array(reference_frame, dtype=np.float32)
        
        # Blend frames
        blended_array = current_array * (1 - blend_ratio) + reference_array * blend_ratio
        blended_array = np.clip(blended_array, 0, 255).astype(np.uint8)
        
        return Image.fromarray(blended_array)
    
    @torch.no_grad()
    def generate_frame_batch(
        self,
        init_image: Image.Image,
        prompt: str,
        num_frames: int = 1,
        strength: float = 0.75,
        guidance_scale: float = 7.5,
        num_inference_steps: int = 20,
        generator: Optional[torch.Generator] = None,
        progress_callback=None
    ) -> List[Image.Image]:
        """Generate a batch of frames using img2img"""
        
        if not self.is_loaded:
            raise ValueError("Model not loaded. Please load the model first.")
        
        frames = []
        current_image = init_image
        
        for i in range(num_frames):
            if progress_callback:
                progress_callback(f"Generating frame {i+1}/{num_frames}")
            
            # Get motion context
            motion_context = self.temporal_buffer.get_motion_context()
            
            # Adaptive parameters based on motion
            adaptive_strength = self.calculate_adaptive_strength(motion_context, strength)
            enhanced_prompt = self.enhance_prompt_with_motion(prompt, motion_context)
            
            # Generate frame
            result = self.pipe(
                prompt=enhanced_prompt,
                image=current_image,
                strength=adaptive_strength,
                guidance_scale=guidance_scale,
                num_inference_steps=num_inference_steps,
                generator=generator
            )
            
            generated_frame = result.images[0]
            
            # Apply temporal consistency blending
            if len(self.temporal_buffer.frames) > 0:
                reference_frame = self.temporal_buffer.get_reference_frame()
                blend_ratio = 0.1 if motion_context.get("current_motion", 0) > 20 else 0.2
                generated_frame = self.blend_frames(generated_frame, reference_frame, blend_ratio)
            
            # Update buffer
            self.temporal_buffer.add_frame(generated_frame)
            frames.append(generated_frame)
            
            # Use generated frame as input for next iteration
            current_image = generated_frame
        
        return frames
    
    def generate_i2v_sequence(
        self,
        init_image: Image.Image,
        prompt: str,
        total_frames: int = 16,
        frames_per_batch: int = 2,
        strength: float = 0.75,
        guidance_scale: float = 7.5,
        num_inference_steps: int = 20,
        seed: Optional[int] = None,
        progress_callback=None
    ) -> List[Image.Image]:
        """Generate I2V sequence with flexible batch sizes"""
        
        if not self.is_loaded:
            raise ValueError("Model not loaded. Please load the model first.")
        
        # Setup generator
        generator = torch.Generator(device=self.device)
        if seed is not None:
            generator.manual_seed(seed)
        
        # Reset temporal buffer and add initial frame
        self.temporal_buffer = SimpleTemporalBuffer()
        self.temporal_buffer.add_frame(init_image)
        
        all_frames = [init_image]  # Start with initial frame
        frames_generated = 1
        current_reference = init_image
        
        # Generate in batches
        while frames_generated < total_frames:
            remaining_frames = total_frames - frames_generated
            current_batch_size = min(frames_per_batch, remaining_frames)
            
            if progress_callback:
                progress_callback(f"Batch: Generating frames {frames_generated+1}-{frames_generated+current_batch_size}")
            
            # Generate batch
            batch_frames = self.generate_frame_batch(
                init_image=current_reference,
                prompt=prompt,
                num_frames=current_batch_size,
                strength=strength,
                guidance_scale=guidance_scale,
                num_inference_steps=num_inference_steps,
                generator=generator,
                progress_callback=progress_callback
            )
            
            # Add to results
            all_frames.extend(batch_frames)
            frames_generated += current_batch_size
            
            # Update reference for next batch
            current_reference = batch_frames[-1]
        
        return all_frames

# Global generator instance
generator = SD15FlexibleI2VGenerator()

def load_model_interface():
    """Interface function to load the model"""
    status = generator.load_model()
    return status

def create_frames_to_gif(frames: List[Image.Image], duration: int = 200) -> str:
    """Convert frames to GIF and return file path"""
    temp_dir = tempfile.mkdtemp()
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    gif_path = os.path.join(temp_dir, f"i2v_sequence_{timestamp}.gif")
    
    frames[0].save(
        gif_path,
        save_all=True,
        append_images=frames[1:],
        duration=duration,
        loop=0
    )
    
    return gif_path

def create_frames_to_video(frames: List[Image.Image], fps: int = 8) -> str:
    """Convert frames to MP4 video and return file path"""
    temp_dir = tempfile.mkdtemp()
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    video_path = os.path.join(temp_dir, f"i2v_sequence_{timestamp}.mp4")
    
    try:
        with imageio.get_writer(video_path, fps=fps) as writer:
            for frame in frames:
                writer.append_data(np.array(frame))
        return video_path
    except ImportError:
        # Fallback to GIF if imageio not available
        return create_frames_to_gif(frames, duration=int(1000/fps))

def generate_i2v_interface(
    init_image,
    prompt,
    total_frames,
    frames_per_batch,
    strength,
    guidance_scale,
    num_inference_steps,
    seed,
    output_format,
    progress=gr.Progress()
):
    """Main interface function for I2V generation"""
    
    if init_image is None:
        return None, None, "❌ Please upload an initial image"
    
    if not prompt.strip():
        return None, None, "❌ Please enter a prompt"
    
    try:
        # Progress callback
        def update_progress(message):
            progress(0.5, desc=message)
        
        progress(0.1, desc="Starting generation...")
        
        # Resize image to 512x512 if needed
        if init_image.size != (512, 512):
            init_image = init_image.resize((512, 512), Image.Resampling.LANCZOS)
        
        # Generate frames
        frames = generator.generate_i2v_sequence(
            init_image=init_image,
            prompt=prompt,
            total_frames=total_frames,
            frames_per_batch=frames_per_batch,
            strength=strength,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            seed=seed if seed > 0 else None,
            progress_callback=update_progress
        )
        
        progress(0.8, desc="Creating output file...")
        
        # Create output file
        if output_format == "GIF":
            output_path = create_frames_to_gif(frames, duration=200)
        else:  # MP4
            output_path = create_frames_to_video(frames, fps=8)
        
        progress(1.0, desc="Complete!")
        
        # Return last frame as preview and the output file
        return frames[-1], output_path, f"βœ… Generated {len(frames)} frames successfully!"
        
    except Exception as e:
        return None, None, f"❌ Error: {str(e)}"

def generate_variable_pattern_interface(
    init_image,
    prompt,
    total_frames,
    batch_pattern_str,
    strength,
    guidance_scale,
    num_inference_steps,
    seed,
    output_format,
    progress=gr.Progress()
):
    """Interface for variable batch pattern generation"""
    
    if init_image is None:
        return None, None, "❌ Please upload an initial image"
    
    if not prompt.strip():
        return None, None, "❌ Please enter a prompt"
    
    try:
        # Parse batch pattern
        batch_pattern = [int(x.strip()) for x in batch_pattern_str.split(",")]
        if not batch_pattern or any(x <= 0 for x in batch_pattern):
            raise ValueError("Invalid batch pattern")
        
        progress(0.1, desc="Starting variable pattern generation...")
        
        # Resize image
        if init_image.size != (512, 512):
            init_image = init_image.resize((512, 512), Image.Resampling.LANCZOS)
        
        # Generate with variable pattern
        frames = [init_image]
        frames_generated = 1
        current_reference = init_image
        pattern_idx = 0
        
        generator.temporal_buffer = SimpleTemporalBuffer()
        generator.temporal_buffer.add_frame(init_image)
        
        gen = torch.Generator(device=generator.device)
        if seed > 0:
            gen.manual_seed(seed)
        
        while frames_generated < total_frames:
            current_batch_size = batch_pattern[pattern_idx % len(batch_pattern)]
            remaining_frames = total_frames - frames_generated
            actual_batch_size = min(current_batch_size, remaining_frames)
            
            progress(frames_generated / total_frames, 
                    desc=f"Pattern step {pattern_idx+1}: {actual_batch_size} frames")
            
            batch_frames = generator.generate_frame_batch(
                init_image=current_reference,
                prompt=prompt,
                num_frames=actual_batch_size,
                strength=strength,
                guidance_scale=guidance_scale,
                num_inference_steps=num_inference_steps,
                generator=gen
            )
            
            frames.extend(batch_frames)
            frames_generated += actual_batch_size
            current_reference = batch_frames[-1]
            pattern_idx += 1
        
        progress(0.9, desc="Creating output file...")
        
        # Create output
        final_frames = frames[:total_frames+1]  # Include initial frame
        if output_format == "GIF":
            output_path = create_frames_to_gif(final_frames, duration=200)
        else:
            output_path = create_frames_to_video(final_frames, fps=8)
        
        progress(1.0, desc="Complete!")
        
        return final_frames[-1], output_path, f"βœ… Generated {len(final_frames)} frames with pattern {batch_pattern}!"
        
    except Exception as e:
        return None, None, f"❌ Error: {str(e)}"

# Create Gradio interface
def create_gradio_app():
    """Create the main Gradio application"""
    
    with gr.Blocks(title="SD1.5 Flexible I2V Generator", theme=gr.themes.Soft()) as app:
        
        gr.Markdown("""
        # 🎬 SD1.5 Flexible I2V Generator
        
        Generate image-to-video sequences with **flexible batch processing** and **temporal consistency**!
        
        ## Key Features:
        - 🎯 **Flexible Batch Sizes**: Generate 1, 2, 3+ frames at a time
        - πŸ”„ **Motion-Aware Processing**: Adapts based on detected motion
        - 🎨 **Temporal Consistency**: Smooth transitions between frames
        - πŸ“ˆ **Variable Patterns**: Dynamic batch sizing patterns
        """)
        
        # Model loading section
        with gr.Row():
            load_btn = gr.Button("πŸš€ Load SD1.5 Model", variant="primary", size="lg")
            model_status = gr.Textbox(
                label="Model Status", 
                value="Model not loaded. Click 'Load SD1.5 Model' to start.",
                interactive=False
            )
        
        load_btn.click(load_model_interface, outputs=model_status)
        
        # Main interface tabs
        with gr.Tabs():
            
            # Fixed batch size tab
            with gr.Tab("🎯 Fixed Batch Generation"):
                with gr.Row():
                    with gr.Column(scale=1):
                        init_image_1 = gr.Image(
                            label="Initial Image",
                            type="pil",
                            height=300
                        )
                        prompt_1 = gr.Textbox(
                            label="Prompt",
                            placeholder="e.g., a cat walking through a peaceful garden, cinematic lighting",
                            lines=3
                        )
                        
                        with gr.Row():
                            total_frames_1 = gr.Slider(
                                label="Total Frames",
                                minimum=4,
                                maximum=32,
                                value=12,
                                step=1
                            )
                            frames_per_batch_1 = gr.Slider(
                                label="Frames per Batch (Key Parameter!)",
                                minimum=1,
                                maximum=4,
                                value=2,
                                step=1
                            )
                        
                        with gr.Accordion("Advanced Settings", open=False):
                            strength_1 = gr.Slider(
                                label="Strength",
                                minimum=0.3,
                                maximum=0.9,
                                value=0.75,
                                step=0.05
                            )
                            guidance_scale_1 = gr.Slider(
                                label="Guidance Scale",
                                minimum=3.0,
                                maximum=15.0,
                                value=7.5,
                                step=0.5
                            )
                            num_inference_steps_1 = gr.Slider(
                                label="Inference Steps",
                                minimum=10,
                                maximum=50,
                                value=20,
                                step=5
                            )
                            seed_1 = gr.Number(
                                label="Seed (-1 for random)",
                                value=-1
                            )
                            output_format_1 = gr.Radio(
                                label="Output Format",
                                choices=["GIF", "MP4"],
                                value="GIF"
                            )
                        
                        generate_btn_1 = gr.Button("🎬 Generate I2V Sequence", variant="primary", size="lg")
                    
                    with gr.Column(scale=1):
                        preview_1 = gr.Image(label="Last Frame Preview", height=300)
                        output_file_1 = gr.File(label="Download Generated Video/GIF")
                        status_1 = gr.Textbox(label="Status", interactive=False)
                
                generate_btn_1.click(
                    generate_i2v_interface,
                    inputs=[
                        init_image_1, prompt_1, total_frames_1, frames_per_batch_1,
                        strength_1, guidance_scale_1, num_inference_steps_1, seed_1, output_format_1
                    ],
                    outputs=[preview_1, output_file_1, status_1]
                )
            
            # Variable pattern tab
            with gr.Tab("πŸ“ˆ Variable Pattern Generation"):
                with gr.Row():
                    with gr.Column(scale=1):
                        init_image_2 = gr.Image(
                            label="Initial Image",
                            type="pil",
                            height=300
                        )
                        prompt_2 = gr.Textbox(
                            label="Prompt",
                            placeholder="e.g., smooth camera movement through a scene",
                            lines=3
                        )
                        
                        total_frames_2 = gr.Slider(
                            label="Total Frames",
                            minimum=6,
                            maximum=40,
                            value=16,
                            step=1
                        )
                        
                        batch_pattern_2 = gr.Textbox(
                            label="Batch Pattern (comma-separated)",
                            value="1,2,3,2,1",
                            placeholder="e.g., 1,2,3,2,1 or 2,4,2"
                        )
                        
                        gr.Markdown("""
                        **Pattern Examples:**
                        - `1,2,3,2,1` - Start slow, ramp up, slow down
                        - `2,2,2,2` - Consistent 2-frame batches
                        - `1,3,1,3` - Alternating single and triple
                        """)
                        
                        with gr.Accordion("Advanced Settings", open=False):
                            strength_2 = gr.Slider(label="Strength", minimum=0.3, maximum=0.9, value=0.75, step=0.05)
                            guidance_scale_2 = gr.Slider(label="Guidance Scale", minimum=3.0, maximum=15.0, value=7.5, step=0.5)
                            num_inference_steps_2 = gr.Slider(label="Inference Steps", minimum=10, maximum=50, value=20, step=5)
                            seed_2 = gr.Number(label="Seed (-1 for random)", value=-1)
                            output_format_2 = gr.Radio(label="Output Format", choices=["GIF", "MP4"], value="GIF")
                        
                        generate_btn_2 = gr.Button("🎨 Generate with Pattern", variant="primary", size="lg")
                    
                    with gr.Column(scale=1):
                        preview_2 = gr.Image(label="Last Frame Preview", height=300)
                        output_file_2 = gr.File(label="Download Generated Video/GIF")
                        status_2 = gr.Textbox(label="Status", interactive=False)
                
                generate_btn_2.click(
                    generate_variable_pattern_interface,
                    inputs=[
                        init_image_2, prompt_2, total_frames_2, batch_pattern_2,
                        strength_2, guidance_scale_2, num_inference_steps_2, seed_2, output_format_2
                    ],
                    outputs=[preview_2, output_file_2, status_2]
                )
        
        # Examples section
        with gr.Accordion("πŸ“ Example Prompts & Tips", open=False):
            gr.Markdown("""
            ## 🎯 Good Prompts for I2V:
            - `a peaceful lake with gentle ripples, soft sunlight, cinematic`
            - `a cat slowly walking through a garden, smooth movement`
            - `camera slowly panning across a mountain landscape`
            - `a flower blooming in timelapse, natural lighting`
            - `gentle waves on a beach, golden hour lighting`
            
            ## πŸ›  Parameter Tips:
            - **Frames per Batch**: 
              - `1` = Maximum consistency, slower generation
              - `2-3` = Balanced quality and speed
              - `4+` = Faster but less consistent
            - **Strength**: 
              - `0.6-0.7` = Subtle changes
              - `0.7-0.8` = Moderate animation
              - `0.8-0.9` = More dramatic changes
            - **Batch Patterns**:
              - Use `1,2,3,2,1` for organic acceleration/deceleration
              - Use consistent values like `2,2,2` for steady pacing
            """)
        
        gr.Markdown("""
        ---
        
        ## πŸš€ **Innovation Highlights:**
        
        This app demonstrates **flexible batch processing** for I2V generation:
        - Generate multiple frames simultaneously with `frames_per_batch`
        - Motion-aware strength adaptation based on optical flow
        - Temporal consistency through intelligent frame blending
        - Variable stepping patterns for dynamic control
        
        **Built with SD1.5 img2img pipeline + custom temporal processing!**
        """)
    
    return app

if __name__ == "__main__":
    app = create_gradio_app()
    app.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        debug=True
    )