File size: 14,620 Bytes
b0f83cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
import torch
import torch.nn.functional as F
from diffusers import StableDiffusionImg2ImgPipeline, DDIMScheduler
from PIL import Image
import numpy as np
from typing import List, Optional, Dict, Any
from collections import deque
import cv2
class SimpleTemporalBuffer:
"""Simplified temporal buffer for SD1.5 img2img"""
def __init__(self, buffer_size: int = 6):
self.buffer_size = buffer_size
self.frames = deque(maxlen=buffer_size)
self.frame_embeddings = deque(maxlen=buffer_size)
self.motion_vectors = deque(maxlen=buffer_size-1)
def add_frame(self, frame: Image.Image, embedding: Optional[torch.Tensor] = None):
"""Add frame to buffer"""
# Calculate optical flow if we have previous frames
if len(self.frames) > 0:
prev_frame = np.array(self.frames[-1])
curr_frame = np.array(frame)
# Convert to grayscale for optical flow
prev_gray = cv2.cvtColor(prev_frame, cv2.COLOR_RGB2GRAY)
curr_gray = cv2.cvtColor(curr_frame, cv2.COLOR_RGB2GRAY)
# Calculate optical flow
flow = cv2.calcOpticalFlowPyrLK(
prev_gray, curr_gray,
np.array([[frame.width//2, frame.height//2]], dtype=np.float32),
None
)[0]
if flow is not None:
motion_magnitude = np.linalg.norm(flow[0] - [frame.width//2, frame.height//2])
self.motion_vectors.append(motion_magnitude)
self.frames.append(frame)
if embedding is not None:
self.frame_embeddings.append(embedding)
def get_reference_frame(self) -> Optional[Image.Image]:
"""Get most recent frame as reference"""
return self.frames[-1] if self.frames else None
def get_motion_context(self) -> Dict[str, Any]:
"""Get motion context for next frame generation"""
if len(self.motion_vectors) == 0:
return {"has_motion": False, "predicted_motion": 0.0}
# Simple motion prediction based on recent vectors
recent_motion = list(self.motion_vectors)[-3:] # Last 3 motions
avg_motion = np.mean(recent_motion)
motion_trend = recent_motion[-1] - recent_motion[0] if len(recent_motion) > 1 else 0
predicted_motion = avg_motion + motion_trend * 0.5
return {
"has_motion": True,
"current_motion": avg_motion,
"predicted_motion": predicted_motion,
"motion_trend": motion_trend,
"motion_history": recent_motion
}
class SD15FlexibleI2VGenerator:
"""Flexible I2V generator using SD1.5 img2img pipeline"""
def __init__(
self,
model_id: str = "runwayml/stable-diffusion-v1-5",
device: str = "cuda" if torch.cuda.is_available() else "cpu"
):
self.device = device
print(f"π Loading SD1.5 pipeline on {device}...")
# Load pipeline with DDIM scheduler for better img2img
self.pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
model_id,
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
safety_checker=None,
requires_safety_checker=False
)
# Use DDIM for more consistent results
self.pipe.scheduler = DDIMScheduler.from_config(self.pipe.scheduler.config)
self.pipe = self.pipe.to(device)
# Enable memory efficient attention
if device == "cuda":
self.pipe.enable_attention_slicing()
try:
self.pipe.enable_xformers_memory_efficient_attention()
except:
print("β οΈ xformers not available, using standard attention")
self.temporal_buffer = SimpleTemporalBuffer()
print("β
SD1.5 Flexible I2V Generator ready!")
def calculate_adaptive_strength(self, motion_context: Dict[str, Any], base_strength: float = 0.75) -> float:
"""Calculate adaptive denoising strength based on motion"""
if not motion_context.get("has_motion", False):
return base_strength
motion = motion_context["current_motion"]
# More motion = less strength (preserve more of previous frame)
# Less motion = more strength (allow more change)
motion_factor = np.clip(motion / 50.0, 0.0, 1.0) # Normalize motion
adaptive_strength = base_strength * (1.0 - motion_factor * 0.3)
return np.clip(adaptive_strength, 0.3, 0.9)
def enhance_prompt_with_motion(self, base_prompt: str, motion_context: Dict[str, Any]) -> str:
"""Enhance prompt based on motion context"""
if not motion_context.get("has_motion", False):
return base_prompt
motion = motion_context["current_motion"]
trend = motion_context.get("motion_trend", 0)
# Add motion descriptors based on analysis
if motion > 30:
if trend > 5:
motion_desc = ", fast movement, dynamic motion, motion blur"
else:
motion_desc = ", steady movement, continuous motion"
elif motion > 10:
motion_desc = ", gentle movement, smooth transition"
else:
motion_desc = ", subtle movement, slight change"
return base_prompt + motion_desc
def blend_frames(self, current_frame: Image.Image, reference_frame: Image.Image, blend_ratio: float = 0.15) -> Image.Image:
"""Blend current frame with reference for temporal consistency"""
current_array = np.array(current_frame, dtype=np.float32)
reference_array = np.array(reference_frame, dtype=np.float32)
# Blend frames
blended_array = current_array * (1 - blend_ratio) + reference_array * blend_ratio
blended_array = np.clip(blended_array, 0, 255).astype(np.uint8)
return Image.fromarray(blended_array)
@torch.no_grad()
def generate_frame_batch(
self,
init_image: Image.Image,
prompt: str,
num_frames: int = 1,
strength: float = 0.75,
guidance_scale: float = 7.5,
num_inference_steps: int = 20,
generator: Optional[torch.Generator] = None
) -> List[Image.Image]:
"""Generate a batch of frames using img2img"""
frames = []
current_image = init_image
for i in range(num_frames):
print(f" π¬ Generating frame {i+1}/{num_frames}")
# Get motion context
motion_context = self.temporal_buffer.get_motion_context()
# Adaptive parameters based on motion
adaptive_strength = self.calculate_adaptive_strength(motion_context, strength)
enhanced_prompt = self.enhance_prompt_with_motion(prompt, motion_context)
print(f" π Motion: {motion_context.get('current_motion', 0):.1f}, Strength: {adaptive_strength:.2f}")
# Generate frame
result = self.pipe(
prompt=enhanced_prompt,
image=current_image,
strength=adaptive_strength,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator
)
generated_frame = result.images[0]
# Apply temporal consistency blending
if len(self.temporal_buffer.frames) > 0:
reference_frame = self.temporal_buffer.get_reference_frame()
blend_ratio = 0.1 if motion_context.get("current_motion", 0) > 20 else 0.2
generated_frame = self.blend_frames(generated_frame, reference_frame, blend_ratio)
# Update buffer
self.temporal_buffer.add_frame(generated_frame)
frames.append(generated_frame)
# Use generated frame as input for next iteration
current_image = generated_frame
return frames
def generate_i2v_sequence(
self,
init_image: Image.Image,
prompt: str,
total_frames: int = 16,
frames_per_batch: int = 2, # Key parameter - batch size!
strength: float = 0.75,
guidance_scale: float = 7.5,
num_inference_steps: int = 20,
seed: Optional[int] = None
) -> List[Image.Image]:
"""Generate I2V sequence with flexible batch sizes"""
print(f"π― Generating {total_frames} frames in batches of {frames_per_batch}")
# Setup generator
generator = torch.Generator(device=self.device)
if seed is not None:
generator.manual_seed(seed)
# Reset temporal buffer and add initial frame
self.temporal_buffer = SimpleTemporalBuffer()
self.temporal_buffer.add_frame(init_image)
all_frames = [init_image] # Start with initial frame
frames_generated = 1
current_reference = init_image
# Generate in batches
while frames_generated < total_frames:
remaining_frames = total_frames - frames_generated
current_batch_size = min(frames_per_batch, remaining_frames)
print(f"π Batch: Generating frames {frames_generated+1}-{frames_generated+current_batch_size}")
# Generate batch
batch_frames = self.generate_frame_batch(
init_image=current_reference,
prompt=prompt,
num_frames=current_batch_size,
strength=strength,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator
)
# Add to results
all_frames.extend(batch_frames)
frames_generated += current_batch_size
# Update reference for next batch
current_reference = batch_frames[-1]
print(f"β
Completed batch - {frames_generated}/{total_frames} frames done")
return all_frames
def generate_with_variable_batching(
self,
init_image: Image.Image,
prompt: str,
total_frames: int = 24,
batch_pattern: List[int] = [1, 2, 3, 2, 2, 1], # Variable batch sizes
**kwargs
) -> List[Image.Image]:
"""Generate with dynamic batch pattern"""
print(f"π¨ Generating {total_frames} frames with pattern: {batch_pattern}")
all_frames = [init_image]
frames_generated = 1
current_reference = init_image
pattern_idx = 0
while frames_generated < total_frames:
# Get current batch size from pattern
current_batch_size = batch_pattern[pattern_idx % len(batch_pattern)]
remaining_frames = total_frames - frames_generated
actual_batch_size = min(current_batch_size, remaining_frames)
print(f"π Pattern step {pattern_idx+1}: {actual_batch_size} frames")
# Generate batch with current settings
batch_frames = self.generate_frame_batch(
init_image=current_reference,
prompt=prompt,
num_frames=actual_batch_size,
**kwargs
)
all_frames.extend(batch_frames)
frames_generated += actual_batch_size
current_reference = batch_frames[-1]
pattern_idx += 1
return all_frames[:total_frames+1] # Include initial frame
def save_frames_as_gif(frames: List[Image.Image], output_path: str, duration: int = 100):
"""Save frames as animated GIF"""
frames[0].save(
output_path,
save_all=True,
append_images=frames[1:],
duration=duration,
loop=0
)
print(f"πΎ Saved {len(frames)} frames to {output_path}")
def save_frames_as_video(frames: List[Image.Image], output_path: str, fps: int = 8):
"""Save frames as MP4 video"""
try:
import imageio
with imageio.get_writer(output_path, fps=fps) as writer:
for frame in frames:
writer.append_data(np.array(frame))
print(f"π₯ Saved {len(frames)} frames to {output_path}")
except ImportError:
print("β οΈ imageio not available, saving as GIF instead")
save_frames_as_gif(frames, output_path.replace('.mp4', '.gif'))
# Example usage
def example_usage():
"""Example of how to use the SD1.5 Flexible I2V Generator"""
# Initialize generator
generator = SD15FlexibleI2VGenerator()
# Load or create initial image
# For demo, create a simple colored image
init_image = Image.new('RGB', (512, 512), color='lightblue')
# Example 1: Fixed batch size generation
print("\n㪠Example 1: Fixed batch size (2 frames per batch)")
frames_fixed = generator.generate_i2v_sequence(
init_image=init_image,
prompt="a peaceful lake with gentle ripples, cinematic lighting",
total_frames=8,
frames_per_batch=2, # Generate 2 frames at a time
strength=0.7,
guidance_scale=7.5,
num_inference_steps=20,
seed=42
)
# Example 2: Variable batch pattern
print("\nπ¨ Example 2: Variable batch pattern")
frames_variable = generator.generate_with_variable_batching(
init_image=init_image,
prompt="a cat walking through a garden, smooth motion",
total_frames=12,
batch_pattern=[1, 2, 3, 2, 1], # Start slow, ramp up, slow down
strength=0.75,
guidance_scale=7.5,
seed=123
)
# Save results
save_frames_as_gif(frames_fixed, "sd15_fixed_batch.gif", duration=200)
save_frames_as_gif(frames_variable, "sd15_variable_batch.gif", duration=150)
print("\nπ SD1.5 Flexible Batch I2V Generation Complete!")
print("β¨ Key innovations demonstrated:")
print(" - Flexible batch sizing (frames_per_batch parameter)")
print(" - Motion-aware adaptive strength")
print(" - Temporal consistency through frame blending")
print(" - Variable batch patterns for dynamic control")
print(" - Optical flow-based motion analysis")
if __name__ == "__main__":
example_usage() |