File size: 26,774 Bytes
14f59fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 |
"""
Flexible Batch I2V Generator with Temporal Consistency
Generates N frames at a time (1, 2, 3, etc.) while maintaining temporal consistency
Optimized for Image-to-Video models with reference frame initialization
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import List, Optional, Tuple, Dict, Any, Union
import numpy as np
from collections import deque
import math
from PIL import Image
import torchvision.transforms as transforms
class TemporalConsistencyBuffer:
"""Enhanced temporal buffer for flexible batch generation"""
def __init__(self, buffer_size: int = 8, feature_dim: int = 512):
self.buffer_size = buffer_size
self.feature_dim = feature_dim
self.frame_features = deque(maxlen=buffer_size)
self.frame_latents = deque(maxlen=buffer_size)
self.frame_images = deque(maxlen=buffer_size) # Store actual frames for I2V
self.motion_vectors = deque(maxlen=buffer_size-1)
self.temporal_weights = deque(maxlen=buffer_size) # Importance weights
def add_frames(self, features: torch.Tensor, latents: torch.Tensor, images: Optional[torch.Tensor] = None, batch_size: int = 1):
"""Add batch of frames to temporal buffer"""
for i in range(batch_size):
frame_feat = features[i:i+1] if features.dim() > 3 else features
frame_lat = latents[i:i+1] if latents.dim() > 3 else latents
frame_img = images[i:i+1] if images is not None and images.dim() > 3 else images
# Calculate motion vector if we have previous frames
if len(self.frame_features) > 0:
motion = frame_feat - self.frame_features[-1]
self.motion_vectors.append(motion)
self.frame_features.append(frame_feat)
self.frame_latents.append(frame_lat)
if frame_img is not None:
self.frame_images.append(frame_img)
# Weight newer frames more heavily
weight = 1.0 / (len(self.frame_features) + 1)
self.temporal_weights.append(weight)
def get_reference_frame(self) -> Optional[torch.Tensor]:
"""Get the most recent frame as reference for I2V"""
if len(self.frame_images) > 0:
return self.frame_images[-1]
elif len(self.frame_latents) > 0:
return self.frame_latents[-1]
return None
def get_temporal_context(self, num_context_frames: int = 4) -> Dict[str, torch.Tensor]:
"""Get weighted temporal context for next frame batch"""
if len(self.frame_features) == 0:
return {"has_context": False}
# Get most recent frames up to num_context_frames
context_size = min(num_context_frames, len(self.frame_features))
recent_features = list(self.frame_features)[-context_size:]
recent_latents = list(self.frame_latents)[-context_size:]
recent_weights = list(self.temporal_weights)[-context_size:]
# Stack with attention to batch dimension
stacked_features = torch.cat(recent_features, dim=0) # [T, C, H, W]
stacked_latents = torch.cat(recent_latents, dim=0)
weights = torch.tensor(recent_weights, device=stacked_features.device)
# Predict motion for next frames
predicted_motions = []
if len(self.motion_vectors) >= 2:
# Multi-step motion prediction
recent_motions = list(self.motion_vectors)[-3:] # Last 3 motions
for step in range(1, 4): # Predict up to 3 steps ahead
if len(recent_motions) >= 2:
# Weighted motion extrapolation
motion_pred = (
recent_motions[-1] * 1.5 -
recent_motions[-2] * 0.5
)
if len(recent_motions) >= 3:
motion_pred += recent_motions[-3] * 0.1
else:
motion_pred = recent_motions[-1] if recent_motions else None
predicted_motions.append(motion_pred)
return {
"has_context": True,
"frame_features": stacked_features,
"frame_latents": stacked_latents,
"temporal_weights": weights,
"predicted_motions": predicted_motions,
"sequence_length": len(self.frame_features),
"reference_frame": self.get_reference_frame()
}
class FlexibleTemporalAttention(nn.Module):
"""Flexible attention that handles variable batch sizes"""
def __init__(self, dim: int, num_heads: int = 8, max_frames: int = 16):
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.scale = self.head_dim ** -0.5
self.max_frames = max_frames
self.qkv = nn.Linear(dim, dim * 3, bias=False)
self.proj = nn.Linear(dim, dim)
# Learnable temporal positional embeddings
self.temporal_pos_embed = nn.Parameter(torch.randn(1, max_frames, dim) * 0.02)
self.frame_type_embed = nn.Parameter(torch.randn(3, dim) * 0.02) # past, current, future
# Cross-frame interaction
self.cross_frame_norm = nn.LayerNorm(dim)
self.cross_frame_mlp = nn.Sequential(
nn.Linear(dim, dim * 2),
nn.GELU(),
nn.Linear(dim * 2, dim)
)
def forward(self, current_frames: torch.Tensor, temporal_context: Dict[str, Any], num_current_frames: int = 1):
"""
current_frames: [B*N, H*W, C] where N is number of frames being generated
temporal_context: dict with past frame information
"""
B_times_N, HW, C = current_frames.shape
B = B_times_N // num_current_frames
if not temporal_context.get("has_context", False):
return current_frames
# Reshape current frames
current = current_frames.view(B, num_current_frames, HW, C)
# Get temporal context
past_features = temporal_context["frame_features"] # [T, C, H, W]
T, _, H, W = past_features.shape
past_features = past_features.view(T, C, H*W).permute(0, 2, 1) # [T, H*W, C]
past_features = past_features.unsqueeze(0).expand(B, -1, -1, -1) # [B, T, H*W, C]
# Combine all frames (past + current)
all_frames = torch.cat([past_features, current], dim=1) # [B, T+N, H*W, C]
total_frames = T + num_current_frames
# Add positional embeddings
pos_ids = torch.arange(total_frames, device=current_frames.device)
pos_embed = self.temporal_pos_embed[:, :total_frames] # [1, T+N, C]
# Add frame type embeddings (past=0, current=1, future=2)
frame_type_ids = torch.cat([
torch.zeros(T, device=current_frames.device), # past frames
torch.ones(num_current_frames, device=current_frames.device) # current frames
]).long()
type_embed = self.frame_type_embed[frame_type_ids] # [T+N, C]
# Apply embeddings
all_frames = all_frames + pos_embed.unsqueeze(2) + type_embed.unsqueeze(0).unsqueeze(2)
# Flatten for attention
all_frames_flat = all_frames.view(B, total_frames * HW, C)
# Multi-head attention
qkv = self.qkv(all_frames_flat).reshape(B, -1, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
# Temporal attention with causality mask for current frames
attn = (q @ k.transpose(-2, -1)) * self.scale
# Create causal mask - current frames can see past + themselves, but not future
mask = torch.triu(torch.ones(total_frames * HW, total_frames * HW, device=current_frames.device), diagonal=1)
mask = mask.bool()
attn = attn.masked_fill(mask.unsqueeze(0).unsqueeze(0), float('-inf'))
attn = attn.softmax(dim=-1)
out = (attn @ v).transpose(1, 2).reshape(B, total_frames * HW, C)
# Extract only current frame features
current_start = T * HW
enhanced_current = out[:, current_start:] # [B, N*H*W, C]
enhanced_current = self.proj(enhanced_current)
# Cross-frame interaction within current batch
if num_current_frames > 1:
enhanced_current = enhanced_current.view(B, num_current_frames, HW, C)
for i in range(num_current_frames):
frame_i = enhanced_current[:, i] # [B, H*W, C]
# Interact with other frames in current batch
other_frames = torch.cat([
enhanced_current[:, :i],
enhanced_current[:, i+1:]
], dim=1) if num_current_frames > 1 else None
if other_frames is not None:
cross_context = other_frames.mean(dim=1) # [B, H*W, C]
frame_i_norm = self.cross_frame_norm(frame_i + cross_context)
frame_i = frame_i + self.cross_frame_mlp(frame_i_norm)
enhanced_current[:, i] = frame_i
enhanced_current = enhanced_current.view(B * num_current_frames, HW, C)
return enhanced_current
class FlexibleI2VDiffuser(nn.Module):
"""Flexible I2V diffusion model that generates N frames at a time"""
def __init__(
self,
base_diffusion_model,
feature_dim: int = 512,
temporal_buffer_size: int = 8,
num_attention_heads: int = 8,
max_batch_frames: int = 3
):
super().__init__()
self.base_model = base_diffusion_model
self.feature_dim = feature_dim
self.temporal_buffer_size = temporal_buffer_size
self.max_batch_frames = max_batch_frames
# Enhanced feature extraction for I2V
self.image_encoder = nn.Sequential(
nn.Conv2d(3, feature_dim // 4, 7, padding=3),
nn.GroupNorm(8, feature_dim // 4),
nn.SiLU(),
nn.Conv2d(feature_dim // 4, feature_dim // 2, 3, padding=1, stride=2),
nn.GroupNorm(8, feature_dim // 2),
nn.SiLU(),
nn.Conv2d(feature_dim // 2, feature_dim, 3, padding=1, stride=2),
nn.GroupNorm(8, feature_dim),
nn.SiLU()
)
self.latent_encoder = nn.Conv2d(
base_diffusion_model.in_channels, feature_dim, 3, padding=1
)
# Flexible temporal attention
self.temporal_attention = FlexibleTemporalAttention(
feature_dim, num_attention_heads, max_batch_frames * 4
)
# I2V specific components
self.reference_adapter = nn.Sequential(
nn.Conv2d(feature_dim * 2, feature_dim, 1),
nn.GroupNorm(8, feature_dim),
nn.SiLU()
)
self.motion_conditioner = nn.Sequential(
nn.Linear(feature_dim, feature_dim * 2),
nn.GELU(),
nn.Linear(feature_dim * 2, feature_dim)
)
# Multi-frame consistency
self.frame_consistency_net = nn.Sequential(
nn.Conv3d(feature_dim, feature_dim, (3, 3, 3), padding=(1, 1, 1)),
nn.GroupNorm(8, feature_dim),
nn.SiLU(),
nn.Conv3d(feature_dim, feature_dim, (1, 3, 3), padding=(0, 1, 1))
)
# Initialize temporal buffer
self.temporal_buffer = TemporalConsistencyBuffer(temporal_buffer_size, feature_dim)
def encode_reference_image(self, image: torch.Tensor) -> torch.Tensor:
"""Encode reference image for I2V conditioning"""
if image.shape[1] == 3: # RGB image
return self.image_encoder(image)
else: # Already encoded latent
return self.latent_encoder(image)
def apply_i2v_conditioning(
self,
current_latents: torch.Tensor, # [B*N, C, H, W]
temporal_context: Dict[str, Any],
num_frames: int = 1
) -> torch.Tensor:
"""Apply I2V conditioning with flexible frame count"""
B_times_N, C, H, W = current_latents.shape
B = B_times_N // num_frames
# Extract features from current latents
current_features = self.latent_encoder(current_latents) # [B*N, F, H, W]
if not temporal_context.get("has_context", False):
return current_latents
# Apply temporal attention
current_flat = current_features.flatten(2).transpose(1, 2) # [B*N, H*W, F]
enhanced_features = self.temporal_attention(current_flat, temporal_context, num_frames)
enhanced_features = enhanced_features.transpose(1, 2).reshape(B_times_N, -1, H, W)
# Reference frame conditioning for I2V
if temporal_context.get("reference_frame") is not None:
ref_frame = temporal_context["reference_frame"]
ref_features = self.encode_reference_image(ref_frame)
# Broadcast reference to all current frames
ref_features = ref_features.repeat(num_frames, 1, 1, 1)
# Combine with current features
combined_features = torch.cat([enhanced_features, ref_features], dim=1)
conditioned_features = self.reference_adapter(combined_features)
else:
conditioned_features = enhanced_features
# Multi-frame consistency for batch generation
if num_frames > 1:
# Reshape for 3D convolution
batch_features = conditioned_features.view(B, num_frames, -1, H, W)
batch_features = batch_features.permute(0, 2, 1, 3, 4) # [B, C, T, H, W]
# Apply 3D consistency
consistent_features = self.frame_consistency_net(batch_features)
consistent_features = consistent_features.permute(0, 2, 1, 3, 4) # [B, T, C, H, W]
conditioned_features = consistent_features.reshape(B_times_N, -1, H, W)
# Motion conditioning
if temporal_context.get("predicted_motions"):
motions = temporal_context["predicted_motions"][:num_frames]
for i, motion in enumerate(motions):
if motion is not None:
frame_idx = i * B + torch.arange(B, device=current_latents.device)
motion_flat = motion.flatten(2).transpose(1, 2).mean(dim=1) # [B, F]
motion_cond = self.motion_conditioner(motion_flat) # [B, F]
motion_cond = motion_cond.unsqueeze(-1).unsqueeze(-1) # [B, F, 1, 1]
conditioned_features[frame_idx] += motion_cond
# Blend with original latents
alpha = 0.4 # I2V conditioning strength
enhanced_latents = current_latents + alpha * conditioned_features
return enhanced_latents
def forward(
self,
noisy_latents: torch.Tensor, # [B*N, C, H, W]
timestep: torch.Tensor,
text_embeddings: torch.Tensor,
num_frames: int = 1,
use_temporal_consistency: bool = True
) -> torch.Tensor:
"""Forward pass with flexible frame count"""
if use_temporal_consistency:
# Get temporal context
temporal_context = self.temporal_buffer.get_temporal_context()
# Apply I2V conditioning
enhanced_latents = self.apply_i2v_conditioning(
noisy_latents, temporal_context, num_frames
)
else:
enhanced_latents = noisy_latents
# Expand text embeddings for multiple frames
if text_embeddings.shape[0] != enhanced_latents.shape[0]:
text_embeddings = text_embeddings.repeat(num_frames, 1, 1)
# Run base diffusion model
noise_pred = self.base_model(enhanced_latents, timestep, text_embeddings)
return noise_pred
def update_temporal_buffer(self, latents: torch.Tensor, images: Optional[torch.Tensor] = None, num_frames: int = 1):
"""Update temporal buffer with generated frames"""
with torch.no_grad():
features = self.latent_encoder(latents)
self.temporal_buffer.add_frames(features, latents, images, num_frames)
class FlexibleI2VGenerator:
"""High-level generator with configurable frame batch sizes"""
def __init__(
self,
diffusion_model: FlexibleI2VDiffuser,
scheduler,
vae, # For encoding/decoding images
device: str = "cuda"
):
self.model = diffusion_model
self.scheduler = scheduler
self.vae = vae
self.device = device
# Image preprocessing
self.image_transform = transforms.Compose([
transforms.Resize((512, 512)),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])
])
def encode_image(self, image: Union[Image.Image, torch.Tensor]) -> torch.Tensor:
"""Encode PIL image or tensor to latent space"""
if isinstance(image, Image.Image):
image = self.image_transform(image).unsqueeze(0).to(self.device)
with torch.no_grad():
latent = self.vae.encode(image).latent_dist.sample()
latent = latent * self.vae.config.scaling_factor
return latent
def decode_latents(self, latents: torch.Tensor) -> torch.Tensor:
"""Decode latents to images"""
with torch.no_grad():
latents = latents / self.vae.config.scaling_factor
images = self.vae.decode(latents).sample
images = (images + 1.0) / 2.0
images = torch.clamp(images, 0.0, 1.0)
return images
@torch.no_grad()
def generate_i2v_sequence(
self,
reference_image: Union[Image.Image, torch.Tensor],
prompt: str,
text_encoder,
tokenizer,
num_frames: int = 16,
frames_per_batch: int = 2, # This is the key parameter!
num_inference_steps: int = 20,
guidance_scale: float = 7.5,
generator: Optional[torch.Generator] = None,
callback=None
) -> List[torch.Tensor]:
"""Generate I2V sequence with configurable batch size"""
print(f"π¬ Generating {num_frames} frames in batches of {frames_per_batch}")
# Encode reference image
ref_latent = self.encode_image(reference_image)
ref_image_tensor = reference_image if isinstance(reference_image, torch.Tensor) else \
self.image_transform(reference_image).unsqueeze(0).to(self.device)
# Encode text prompt
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt"
)
text_embeddings = text_encoder(text_inputs.input_ids.to(self.device))[0]
# Prepare unconditional embeddings
uncond_tokens = [""]
uncond_inputs = tokenizer(
uncond_tokens,
padding="max_length",
max_length=tokenizer.model_max_length,
return_tensors="pt"
)
uncond_embeddings = text_encoder(uncond_inputs.input_ids.to(self.device))[0]
# Reset temporal buffer and add reference frame
self.model.temporal_buffer = TemporalConsistencyBuffer(
self.model.temporal_buffer_size,
self.model.feature_dim
)
self.model.update_temporal_buffer(ref_latent, ref_image_tensor, 1)
generated_frames = [ref_latent]
latent_shape = ref_latent.shape
# Generate in flexible batches
frames_generated = 1 # Start with reference frame
while frames_generated < num_frames:
# Calculate current batch size
remaining_frames = num_frames - frames_generated
current_batch_size = min(frames_per_batch, remaining_frames)
print(f"π― Generating frames {frames_generated+1}-{frames_generated+current_batch_size}")
# Initialize noise for current batch
batch_latents = torch.randn(
(current_batch_size, *latent_shape[1:]),
generator=generator,
device=self.device,
dtype=text_embeddings.dtype
)
# Prepare embeddings for batch
batch_text_embeddings = torch.cat([
uncond_embeddings.repeat(current_batch_size, 1, 1),
text_embeddings.repeat(current_batch_size, 1, 1)
])
# Set scheduler timesteps
self.scheduler.set_timesteps(num_inference_steps, device=self.device)
timesteps = self.scheduler.timesteps
# Denoising loop for current batch
for i, t in enumerate(timesteps):
# Expand for classifier-free guidance
latent_model_input = torch.cat([batch_latents] * 2)
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# Predict noise with temporal consistency
noise_pred = self.model(
latent_model_input,
t,
batch_text_embeddings,
num_frames=current_batch_size,
use_temporal_consistency=True
)
# Classifier-free guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# Scheduler step
batch_latents = self.scheduler.step(noise_pred, t, batch_latents).prev_sample
if callback:
callback(i, t, batch_latents)
# Update temporal buffer with generated batch
batch_images = self.decode_latents(batch_latents)
self.model.update_temporal_buffer(batch_latents, batch_images, current_batch_size)
# Add to results
for j in range(current_batch_size):
generated_frames.append(batch_latents[j:j+1])
frames_generated += current_batch_size
print(f"β
Generated {current_batch_size} frames")
return generated_frames
def generate_with_stepping_strategy(
self,
reference_image: Union[Image.Image, torch.Tensor],
prompt: str,
text_encoder,
tokenizer,
total_frames: int = 24,
stepping_pattern: List[int] = [1, 2, 3, 2, 1], # Variable batch sizes
**kwargs
) -> List[torch.Tensor]:
"""Generate with dynamic stepping pattern"""
all_frames = []
frames_generated = 0
step_idx = 0
while frames_generated < total_frames:
# Get current step size
current_step = stepping_pattern[step_idx % len(stepping_pattern)]
remaining = total_frames - frames_generated
actual_step = min(current_step, remaining)
print(f"π Step {step_idx + 1}: Generating {actual_step} frames")
# Generate batch
if frames_generated == 0:
# First generation includes reference
frames = self.generate_i2v_sequence(
reference_image=reference_image,
prompt=prompt,
text_encoder=text_encoder,
tokenizer=tokenizer,
num_frames=actual_step + 1, # +1 for reference
frames_per_batch=actual_step,
**kwargs
)
all_frames.extend(frames)
frames_generated += len(frames)
else:
# Continue from last frame
last_frame_latent = all_frames[-1]
last_frame_image = self.decode_latents(last_frame_latent)
frames = self.generate_i2v_sequence(
reference_image=last_frame_image,
prompt=prompt,
text_encoder=text_encoder,
tokenizer=tokenizer,
num_frames=actual_step + 1,
frames_per_batch=actual_step,
**kwargs
)
all_frames.extend(frames[1:]) # Skip reference (duplicate)
frames_generated += len(frames) - 1
step_idx += 1
return all_frames[:total_frames] # Ensure exact frame count
# Example usage
def example_usage():
"""Example of flexible I2V generation"""
# Load your models (example)
#
base_model, scheduler, vae, text_encoder, tokenizer = load_models()
# Create flexible I2V model
i2v_model = FlexibleI2VDiffuser(
base_diffusion_model=i2v_model,
feature_dim=512,
temporal_buffer_size=8,
max_batch_frames=3
)
# Create generator
generator = FlexibleI2VGenerator(
diffusion_model=i2v_model,
scheduler=scheduler,
vae=vae,
device="cuda"
)
# Load reference image
reference_image = Image.open("reference.jpg")
# Strategy 1: Fixed batch size
frames_fixed = generator.generate_i2v_sequence(
reference_image=reference_image,
prompt="A cat walking in a garden",
text_encoder=text_encoder,
tokenizer=tokenizer,
num_frames=16,
frames_per_batch=2, # Generate 2 frames at a time
num_inference_steps=20
)
# Strategy 2: Variable stepping pattern
frames_variable = generator.generate_with_stepping_strategy(
reference_image=reference_image,
prompt="A cat walking in a garden",
text_encoder=text_encoder,
tokenizer=tokenizer,
total_frames=24,
stepping_pattern=[1, 2, 3, 2, 1], # Start slow, ramp up, slow down
num_inference_steps=20
)
print(f"π Generated {len(frames_fixed)} frames with fixed batching")
print(f"π Generated {len(frames_variable)} frames with variable stepping")
if __name__ == "__main__":
example_usage() |