import gradio as gr import spaces import random import json import os import string from difflib import SequenceMatcher from jiwer import wer import torchaudio from transformers import pipeline # Load metadata with open("common_voice_en_validated_249_hf_ready.json") as f: data = json.load(f) # Prepare dropdown options ages = sorted(set(entry["age"] for entry in data)) genders = sorted(set(entry["gender"] for entry in data)) accents = sorted(set(entry["accent"] for entry in data)) # Utility functions def convert_to_wav(file_path): wav_path = file_path.replace(".mp3", ".wav") if not os.path.exists(wav_path): waveform, sample_rate = torchaudio.load(file_path) waveform = waveform.mean(dim=0, keepdim=True) torchaudio.save(wav_path, waveform, sample_rate) return wav_path def highlight_differences(ref, hyp): sm = SequenceMatcher(None, ref.split(), hyp.split()) result = [] for opcode, i1, i2, j1, j2 in sm.get_opcodes(): if opcode == "equal": result.extend(hyp.split()[j1:j2]) else: wrong = hyp.split()[j1:j2] result.extend([f"{w}" for w in wrong]) return " ".join(result) def normalize(text): text = text.lower() text = text.translate(str.maketrans('', '', string.punctuation)) return text.strip() # Generate Audio def generate_audio(age, gender, accent): filtered = [ entry for entry in data if entry["age"] == age and entry["gender"] == gender and entry["accent"] == accent ] if not filtered: return None, "No matching sample." sample = random.choice(filtered) file_path = os.path.join("common_voice_en_validated_249", sample["path"]) wav_file_path = convert_to_wav(file_path) return wav_file_path, wav_file_path # Transcribe & Compare (GPU Decorated) # @spaces.GPU def transcribe_audio(file_path): if not file_path: return "No file selected.", "", "", "", "", "", "" filename_mp3 = os.path.basename(file_path).replace(".wav", ".mp3") gold = "" for entry in data: if entry["path"].endswith(filename_mp3): gold = normalize(entry["sentence"]) break if not gold: return "Reference not found.", "", "", "", "", "", "" model_ids = [ "openai/whisper-tiny", "openai/whisper-tiny.en", "openai/whisper-base", "openai/whisper-base.en", "openai/whisper-medium", "openai/whisper-medium.en", "distil-whisper/distil-large-v3.5", "facebook/wav2vec2-base-960h", "facebook/wav2vec2-large-960h", "facebook/hubert-large-ls960-ft", ] outputs = {} for model_id in model_ids: try: pipe = pipeline("automatic-speech-recognition", model=model_id) text = pipe(file_path)["text"].strip().lower() clean = normalize(text) wer_score = wer(gold, clean) outputs[model_id] = f"{model_id} (WER: {wer_score:.2f}):
{highlight_differences(gold, clean)}" except Exception as e: outputs[model_id] = f"{model_id}:
Error: {str(e)}" return (gold, *outputs.values()) # Gradio UI with gr.Blocks() as demo: gr.Markdown("# Comparing ASR Models on Diverse English Speech Samples") gr.Markdown(""" This demo compares the transcription performance of several automatic speech recognition (ASR) models. Users can select age, gender, and accent to generate diverse English audio samples. The models are evaluated on their ability to transcribe those samples. Data is sourced from 249 validated entries in the Common Voice English Delta Segment 21.0 release. """) with gr.Row(): age = gr.Dropdown(choices=ages, label="Age") gender = gr.Dropdown(choices=genders, label="Gender") accent = gr.Dropdown(choices=accents, label="Accent") generate_btn = gr.Button("Get Audio") audio_output = gr.Audio(label="Audio", type="filepath", interactive=False) file_path_output = gr.Textbox(label="Audio File Path", visible=False) generate_btn.click(generate_audio, [age, gender, accent], [audio_output, file_path_output]) transcribe_btn = gr.Button("Transcribe with All Models") gold_text = gr.Textbox(label="Reference (Gold Standard)") whisper_tiny_html = gr.HTML(label="Whisper Tiny") whisper_tiny_en_html = gr.HTML(label="Whisper Tiny English") whisper_base_html = gr.HTML(label="Whisper Base") whisper_base_en_html = gr.HTML(label="Whisper Base English") whisper_medium_html = gr.HTML(label="Whisper Medium") whisper_medium_en_html = gr.HTML(label="Whisper Medium English") distil_html = gr.HTML(label="Distil-Whisper Large") wav2vec_base_html = gr.HTML(label="Wav2Vec2 Base") wav2vec_large_html = gr.HTML(label="Wav2Vec2 Large") hubert_html = gr.HTML(label="HuBERT Large") transcribe_btn.click( transcribe_audio, inputs=[file_path_output], outputs=[ gold_text, whisper_tiny_html, whisper_tiny_en_html, whisper_base_html, whisper_base_en_html, whisper_medium_html, whisper_medium_en_html, distil_html, wav2vec_base_html, wav2vec_large_html, hubert_html, ], ) demo.launch()