File size: 5,720 Bytes
efe5623
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import numpy as np
import pandas as pd
from scipy.spatial import distance_matrix

import streamlit as st
from streamlit_folium import folium_static
import folium

from ortools.constraint_solver import routing_enums_pb2
from ortools.constraint_solver import pywrapcp


# マップ及びマップの初期座標、初期ズームの指定
m = folium.Map(location=[35.4122, 137.4130], zoom_start=6)

# 緯度、経度のDataFrameを作成
data = pd.DataFrame(
    [
    ["東京", 35.4122, 139.4130],
    ["千葉", 35.6047, 140.1233],
    ["山梨", 35.6638, 138.5683],
    ["宮城", 38.2688, 140.8719],
    ["新潟", 37.9022, 139.0236],
    ["長野", 36.6513, 138.1811],
    ["福島", 37.7500, 140.4677],
    ["栃木", 36.5658, 139.8836],
    ["石川", 36.5944, 136.6255],
    ["福井", 36.0652, 136.2219],
    ["静岡", 34.9769, 138.3830],
    ["岐阜", 35.3911, 136.7222],
    ["三重", 34.7302, 136.5086],
    ["愛知", 35.1802, 136.9066],
    ["京都", 35.0213, 135.7555],
    ["和歌山", 34.2261,135.1675],
    ["鳥取", 35.5036, 134.2383],
    ["島根", 35.4722, 133.0505],
    ["隠岐の島", 36.1200, 133.1000],
    #["", , ],
    ["広島", 34.3963, 132.4594],
    ["高知", 33.5597, 133.5311],
    ["福岡", 33.6063, 130.4180],
    ["大島", 34.7570, 139.3574],
    ["八丈島", 33.1024, 139.7990],
    ["鹿児島", 31.5602, 130.5580],
    ]
)
data.columns = ["place", "latitude", "longitude"]

### サイドバー

# ヘリの台数
vehicle_num = st.sidebar.selectbox('ヘリの台数',(1, 2, 3, 4))


# 県を選択するマルチラベル(出発点の東京除く)
prefecture = st.sidebar.multiselect('出発点の東京除くマーカーを表示する県を選択してください',list(data[data.place!="東京"].place) , 
                list(data[data.place!="東京"].place)
) #例

# 東京を追加
prefecture = pd.concat(
    [
     data[data.place=="東京"].place,
     data.place[data.place.isin(prefecture)]
    ]
)

data = data[data["place"].isin(prefecture)]

### タイトル
st.title(f"出発点東京 {len(data)}拠点 ヘリ{vehicle_num}機のルート最適化")

# 距離行列
data_matrix = pd.DataFrame(
  distance_matrix(data[["latitude",	"longitude"]].values,
  data[["latitude",	"longitude"]].values),
  index=data["place"],
  columns=data["place"]
)

### 以下、数理最適化
manager = pywrapcp.RoutingIndexManager(
    len(data),                            
    vehicle_num, # 車両台数 
    0  # 出発点のindex
)

routing = pywrapcp.RoutingModel(manager)

def distance_callback(from_index, to_index):
    """Returns the distance between the two nodes."""
    # Convert from routing variable Index to distance matrix NodeIndex.
    from_node = manager.IndexToNode(from_index)
    to_node = manager.IndexToNode(to_index)
    return data_matrix.values.tolist()[from_node][to_node]

transit_callback_index = routing.RegisterTransitCallback(distance_callback)

routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)

dimension_name = 'Distance'
routing.AddDimension(
    transit_callback_index,
    0,  # no slack
    3000,  # vehicle maximum travel distance
    True,  # start cumul to zero
    dimension_name)
distance_dimension = routing.GetDimensionOrDie(dimension_name)
distance_dimension.SetGlobalSpanCostCoefficient(100)

search_parameters = pywrapcp.DefaultRoutingSearchParameters()

search_parameters.first_solution_strategy = (
        routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC)

solution = routing.SolveWithParameters(search_parameters)

def get_routes(solution, routing, manager):
  """Get vehicle routes from a solution and store them in an array."""
  # Get vehicle routes and store them in a two dimensional array whose
  # i,j entry is the jth location visited by vehicle i along its route.
  routes = []
  for route_nbr in range(routing.vehicles()):
    index = routing.Start(route_nbr)
    route = [manager.IndexToNode(index)]
    while not routing.IsEnd(index):
      index = solution.Value(routing.NextVar(index))
      route.append(manager.IndexToNode(index))
    routes.append(route)
  return routes

routes = get_routes(solution, routing, manager)
### 以上、数理最適化


# 線で結ぶ
sq = [] # 座標を格納するリスト
color_list = [] # 色指定用のリスト

# sq、color_list の入力
for i in range(len(routes)):
    sq = sq + data.iloc[routes[i], 1:3].values.tolist()
    color_list = color_list + [i] * len(routes[i])


# order 経路順の作成
place_index = [0]
order_num = [0]

for i in range(len(routes)):
    for j in range(1, len(routes[i]) -1):
        place_index = place_index + [routes[i][j]]
        order_num = order_num + [j]

order = pd.DataFrame(
    [
    order_num,
    place_index
    ]
).T

order.columns = ["order_num", "place_index"]

order = order.sort_values("place_index").reset_index()["order_num"]

# 経路の作成
folium.ColorLine(       # 色付きの線をマップに表示
    positions=sq,       # 座標
    colors= color_list, # 色
    weight=3            # 線の太さ
).add_to(m)

# マーカーの表示
for i in range(len(data)):

  popup = folium.Popup(
    html= f"{order[i]}",
    max_width=1000,
    show=False
  )

  folium.Circle(
    location = data[["latitude", "longitude"]].values.tolist()[i],
    popup=popup,
    parse_html=True,
    color = "red",
    radius = 10000.0,
    fill = True
    ).add_to(m)

# 地図をブラウザに表示
folium_static(m)

st.write("注)各拠点にヘリが停まれるかどうかは無視")