File size: 3,199 Bytes
5eff22e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import torch
from torch.nn import Conv2d, Sequential, ModuleList, ReLU
from ..nn.mobilenet import MobileNetV1

from .ssd import SSD
from .predictor import Predictor
from .config import mobilenetv1_ssd_config as config


def create_mobilenetv1_ssd(num_classes, is_test=False):
    base_net = MobileNetV1(1001).model  # disable dropout layer

    source_layer_indexes = [
        12,
        14,
    ]
    extras = ModuleList([
        Sequential(
            Conv2d(in_channels=1024, out_channels=256, kernel_size=1),
            ReLU(),
            Conv2d(in_channels=256, out_channels=512, kernel_size=3, stride=2, padding=1),
            ReLU()
        ),
        Sequential(
            Conv2d(in_channels=512, out_channels=128, kernel_size=1),
            ReLU(),
            Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=2, padding=1),
            ReLU()
        ),
        Sequential(
            Conv2d(in_channels=256, out_channels=128, kernel_size=1),
            ReLU(),
            Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=2, padding=1),
            ReLU()
        ),
        Sequential(
            Conv2d(in_channels=256, out_channels=128, kernel_size=1),
            ReLU(),
            Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=2, padding=1),
            ReLU()
        )
    ])

    regression_headers = ModuleList([
        Conv2d(in_channels=512, out_channels=6 * 4, kernel_size=3, padding=1),
        Conv2d(in_channels=1024, out_channels=6 * 4, kernel_size=3, padding=1),
        Conv2d(in_channels=512, out_channels=6 * 4, kernel_size=3, padding=1),
        Conv2d(in_channels=256, out_channels=6 * 4, kernel_size=3, padding=1),
        Conv2d(in_channels=256, out_channels=6 * 4, kernel_size=3, padding=1),
        Conv2d(in_channels=256, out_channels=6 * 4, kernel_size=3, padding=1), # TODO: change to kernel_size=1, padding=0?
    ])

    classification_headers = ModuleList([
        Conv2d(in_channels=512, out_channels=6 * num_classes, kernel_size=3, padding=1),
        Conv2d(in_channels=1024, out_channels=6 * num_classes, kernel_size=3, padding=1),
        Conv2d(in_channels=512, out_channels=6 * num_classes, kernel_size=3, padding=1),
        Conv2d(in_channels=256, out_channels=6 * num_classes, kernel_size=3, padding=1),
        Conv2d(in_channels=256, out_channels=6 * num_classes, kernel_size=3, padding=1),
        Conv2d(in_channels=256, out_channels=6 * num_classes, kernel_size=3, padding=1), # TODO: change to kernel_size=1, padding=0?
    ])

    return SSD(num_classes, base_net, source_layer_indexes,
               extras, classification_headers, regression_headers, is_test=is_test, config=config)


def create_mobilenetv1_ssd_predictor(net, candidate_size=200, nms_method=None, sigma=0.5, device=None):
    predictor = Predictor(net, config.image_size, config.image_mean,
                          config.image_std,
                          nms_method=nms_method,
                          iou_threshold=config.iou_threshold,
                          candidate_size=candidate_size,
                          sigma=sigma,
                          device=device)
    return predictor