Kashish-jain's picture
Update app.py
73fba0e verified
import gradio as gr
import re
import json
import torch
from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer
import faker
from typing import List, Dict, Any, Optional
import pandas as pd
class EnhancedPiiProtectionPipeline:
"""
A comprehensive PII protection pipeline that:
1. Uses regex for all detectable patterns first
2. Uses multiple custom NER models for remaining detection
3. Provides three protection methods: labeling, masking, and synthesis
4. Handles general, Indian-specific, address, and medical contexts
"""
def __init__(
self,
main_model_name: str = "Kashish-jain/pii-protection-model",
medical_model_name: str = "Kashish-jain/pii-protection-medical",
use_medical_model: bool = False
):
"""
Initialize the comprehensive PII protection pipeline.
Args:
main_model_name: HuggingFace model name or path for the main PII model
medical_model_name: HuggingFace model name for the medical NER model
use_medical_model: Whether to load and use the medical model
"""
# Main model
self.main_tokenizer = AutoTokenizer.from_pretrained(main_model_name)
self.main_model = pipeline("ner", model=main_model_name, tokenizer=self.main_tokenizer, aggregation_strategy="simple")
# Address-specific model - implementation simplified
self.address_model = self.main_model # Fallback to main model for simplicity
# Medical model
self.use_medical_model = use_medical_model
self.medical_model = None
self.medical_tokenizer = None
if use_medical_model and medical_model_name:
try:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.device = device
self.medical_tokenizer = AutoTokenizer.from_pretrained(medical_model_name)
self.medical_model = pipeline(
"ner",
model=medical_model_name,
tokenizer=self.medical_tokenizer,
aggregation_strategy="simple",
device=0 if torch.cuda.is_available() else -1
)
print(f"Medical model '{medical_model_name}' loaded successfully")
except Exception as e:
print(f"Warning: Could not load medical model. Error: {str(e)}")
self.use_medical_model = False
self.faker = faker.Faker('en_IN')
# Set up regex patterns for common PII entities - IMPROVED PATTERNS
self.regex_patterns = {
# Phone numbers - Fixed to prevent partial matches
'PHONENUMBER': r'(?<!\w)(?:\+91[\-\s]?[789]\d{9}|(?:\+91[\-\s]?)?\d{3}[\-\.\s]?\d{3}[\-\.\s]?\d{4}|(?:\d{3}[\-\s]?){2}\d{4})(?!\d)',
# Email
'EMAIL': r'(?<!\w)[a-zA-Z0-9._%+\-]+@[a-zA-Z0-9.\-]+\.[a-zA-Z]{2,}(?!\w)',
# IP addresses
'IPV4': r'(?<!\w)(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)(?!\w)',
# Credit cards
'CREDITCARDNUMBER': r'(?<!\w)(?:4\d{12}(?:\d{3})?|5[1-5]\d{14}|6(?:011|5\d{2})\d{12}|3[47]\d{13}|3(?:0[0-5]|[68]\d)\d{11}|(?:2131|1800|35\d{3})\d{11})(?!\w)',
# PAN (Indian Permanent Account Number)
'PAN': r'(?<!\w)[A-Z]{5}[0-9]{4}[A-Z](?!\w)',
# Aadhar (Indian ID)
'AADHAR': r'(?<!\w)(?:\d{4}\s\d{4}\s\d{4}|\d{12})(?!\d)',
# Passport
'PASSPORT': r'(?<!\w)[A-Z]{1,2}\d{7}(?!\w)',
# URL
'URL': r'(?<!\w)https?://(?:www\.)?[-a-zA-Z0-9@:%._\+~#=]{1,256}\.[a-zA-Z0-9()]{1,6}\b(?:[-a-zA-Z0-9()@:%_\+.~#?&//=]*)(?!\w)',
# Dates
'DOB': r'(?<!\w)(?:0[1-9]|[12][0-9]|3[01])[/\-\.](?:0[1-9]|1[0-2])[/\-\.](?:19|20)\d{2}(?!\w)',
# PINCODE
'PINCODE': r'(?<!\w)(?:PIN[\s-]*)?\d{6}(?!\d)',
# Bank account & IBAN
'ACCOUNTNUMBER': r'(?<!\w)(?:A/C|Account|ACC)(?:ount)?\s*(?:Number|No|#)?[:\s-]*(\d{9,17})(?!\d)',
'IBAN_CODE': r'(?<!\w)(?:IBAN|International Bank Account Number)?[:\s]*[A-Z]{2}\d{2}[A-Z0-9]{4}[0-9]{7}(?:[0-9]{0,16})(?!\w)',
# Social Security Number (US)
'SSN': r'(?<!\w)\d{3}[-\s]?\d{2}[-\s]?\d{4}(?!\w)',
# Driver's License (simplified)
'DRIVER_LICENSE': r'(?<!\w)(?:[A-Z]{1,2}-\d{5,8}|\d{7,9}|[A-Z]\d{3}-\d{4}-\d{4}|\d{3}-\d{2}-\d{4})(?!\w)'
}
# Medical entity regex patterns - ENHANCED to only capture the value part, not label
self.medical_regex_patterns = {
'DOCTORNAME': r'(?:Dr\.?|Doctor)\s+([A-Z][a-z]+(?:\s+[A-Z][a-z]+)?)',
'PATIENTID': r'(?:Patient\s+ID|ID|MRN)[\s-]*[:]\s*([A-Z0-9]{5,12})', # Modified to use a capture group
'MEDICALID': r'(?:Medical\s+Record|MRN|Patient\s+ID)[\s-]*[:]\s*([A-Z0-9]{4,15})', # Modified to use a capture group
}
# Separated measurements with capture groups to get just the values, not labels
self.measurement_patterns = {
# Height with capture group for just the measurement value
'HEIGHT': r'(?:Height|Ht)[\s-]*[:]\s*((?:\d{1,2}\'\s*(?:\d{1,2}\")?|\d{3}\s*cm|\d{1,2}\.\d{1,2}\s*m))',
# Weight with capture group for just the measurement value
'WEIGHT': r'(?:Weight|Wt)[\s-]*[:]\s*((?:\d{1,3}(?:\.\d{1,2})?\s*(?:kg|lbs?|pounds?|kilograms?)))',
# Blood group/type with separate regex for the value only
'BLOOD_TYPE': r'(?:Blood\s+[Tt]ype|Blood\s+[Gg]roup)[\s-]*[:]\s*((?:A|B|AB|O)[+-])',
}
# Standalone measurement patterns (no labels)
self.standalone_medical_patterns = {
'HEIGHT_STANDALONE': r'(?<!\w)(?:\d{1,2}\'\s*\d{1,2}\"|\d{1,2}\'\d{1,2}\"|\d{1,2}\'|\d{3}\s*cm|\d{1,2}\.\d{1,2}\s*m)(?!\w)',
'WEIGHT_STANDALONE': r'(?<!\w)(?:\d{1,3}(?:\.\d{1,2})?\s*(?:kg|lbs?|pounds?|kilograms?))(?!\w)',
'BLOOD_TYPE_STANDALONE': r'(?<!\w)(?:A|B|AB|O)[+-](?!\w)'
}
# Combine all regex patterns
self.all_regex_patterns = {
**self.regex_patterns,
**self.medical_regex_patterns,
**self.measurement_patterns,
**self.standalone_medical_patterns
}
def regex_detection(self, text: str) -> List[Dict[str, Any]]:
"""Detect PII using regex patterns with improved capture groups."""
entities = []
for entity_type, pattern in self.all_regex_patterns.items():
for match in re.finditer(pattern, text, re.IGNORECASE):
# For patterns with capture groups, use the first group if it exists
if match.groups() and match.group(1):
# For labeled patterns with capture groups (e.g., "Height: 5'6"")
captured_text = match.group(1)
# Calculate start/end positions for the captured group
start = match.start(1)
end = match.end(1)
else:
# For patterns without capture groups or standalone measurements
captured_text = match.group(0)
start = match.start(0)
end = match.end(0)
# Handle standalone height/weight by renaming them
if entity_type == 'HEIGHT_STANDALONE':
entity_type = 'HEIGHT'
elif entity_type == 'WEIGHT_STANDALONE':
entity_type = 'WEIGHT'
elif entity_type == 'BLOOD_TYPE_STANDALONE':
entity_type = 'BLOOD_TYPE'
entities.append({
"text": captured_text,
"label": entity_type,
"start": start,
"end": end,
"score": 0.95, # High confidence for regex matches
"_original_text": text # Store original text for context
})
return entities
def ner_detection(self, text: str, model_type: str = "main") -> List[Dict[str, Any]]:
"""
Detect PII using NER models
Args:
text: Text to analyze
model_type: Type of model to use ("main", "medical")
"""
if model_type == "medical" and not self.use_medical_model:
return []
model = self.medical_model if model_type == "medical" else self.main_model
try:
results = model(text)
# Convert to standard format
entities = []
for result in results:
# Skip low confidence predictions
if result.get('score', 0) < 0.5:
continue
# Clean entity type
entity_type = result.get('entity_group', result.get('entity', '')).replace('B-', '').replace('I-', '')
entities.append({
"text": result.get('word', text[result['start']:result['end']]),
"label": entity_type,
"start": result['start'],
"end": result['end'],
"score": result.get('score', 0.7),
"_original_text": text # Store original text for context
})
return entities
except Exception as e:
print(f"Error with NER detection: {str(e)}")
return []
def merge_entities(self, entities: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""Merge adjacent entities of the same or related types that likely form a single entity"""
if not entities:
return []
# Sort entities by start position
entities.sort(key=lambda x: x['start'])
merged = []
# Define related entity groups (entities that could be part of the same larger entity)
related_types = {
'NAME': ['FIRSTNAME', 'MIDDLENAME', 'LASTNAME', 'PREFIX'],
'ADDRESS': ['STREET', 'CITY', 'STATE', 'ZIPCODE', 'BUILDINGNUMBER'],
'PHONENUMBER': ['PHONENUMBER'] # Explicitly add PHONENUMBER to prevent merging with other types
}
# Flatten the related types for quick lookup
related_types_flat = {}
for main_type, sub_types in related_types.items():
for sub_type in sub_types:
related_types_flat[sub_type] = main_type
# Helper function to check if two entity types are related
def are_related(type1, type2):
# Same type is related
if type1 == type2:
return True
# Prevent merging PHONENUMBER with other types
if type1 == 'PHONENUMBER' or type2 == 'PHONENUMBER':
return type1 == type2
# Check if they're in the same group
for group, types in related_types.items():
if type1 in types and type2 in types:
return True
if type1 == group and type2 in types:
return True
if type2 == group and type1 in types:
return True
# Check through the flattened related types
if type1 in related_types_flat and related_types_flat[type1] == type2:
return True
if type2 in related_types_flat and related_types_flat[type2] == type1:
return True
return False
for entity in entities:
if not merged:
merged.append(entity.copy())
continue
last = merged[-1]
# Maximum space between tokens that could be part of the same entity
# For adjacent words, this would typically be 1 (the space)
max_gap = 5
# Check if entities could be part of the same larger entity:
# 1. Same or related entity type
# 2. Within a reasonable distance
# 3. No other complete word between them
if (are_related(entity['label'], last['label']) and
entity['start'] - last['end'] <= max_gap):
# Get the text between the two entities
between_text = entity.get('_original_text', '')[last['end']:entity['start']] \
if '_original_text' in entity and '_original_text' in last \
else ' '
# Only merge if the gap contains just spaces or very simple punctuation
if between_text.strip() in ['', ' ', '.', ',', '-', '_']:
# Create merged entity with all text between start and end
if '_original_text' in entity and '_original_text' in last:
full_text = last['_original_text'][last['start']:entity['end']]
else:
full_text = last['text'] + between_text + entity['text']
last['text'] = full_text
last['end'] = entity['end']
# When merging different entity types, prefer the broader category
if last['label'] in related_types_flat and entity['label'] == related_types_flat[last['label']]:
last['label'] = entity['label']
elif entity['label'] in related_types_flat and last['label'] == related_types_flat[entity['label']]:
# Keep last['label'] as is
pass
last['score'] = max(last.get('score', 0), entity.get('score', 0))
else:
merged.append(entity.copy())
else:
merged.append(entity.copy())
return merged
def remove_overlapping_entities(self, entities: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""Remove overlapping entities by keeping the highest scoring one"""
if not entities:
return []
# Sort by start position
entities.sort(key=lambda x: x['start'])
# Identify overlapping entities
non_overlapping = []
i = 0
while i < len(entities):
current = entities[i]
# Find all entities that overlap with the current one
overlapping = [current]
j = i + 1
while j < len(entities) and entities[j]['start'] < current['end']:
overlapping.append(entities[j])
j += 1
# Keep the highest scoring entity from overlapping group
if len(overlapping) > 1:
best_entity = max(overlapping, key=lambda x: x.get('score', 0))
non_overlapping.append(best_entity)
else:
non_overlapping.append(current)
# Move index to start after all overlapping entities
i = j
return non_overlapping
def generate_synthetic_value(self, entity_type: str, original_value: str = None) -> str:
"""Generate realistic synthetic data for PII."""
try:
if entity_type in ['PERSON', 'NAME', 'FIRSTNAME', 'LASTNAME']:
return self.faker.name()
elif entity_type == 'EMAIL':
return self.faker.email()
elif entity_type == 'PHONENUMBER':
return self.faker.phone_number()
elif entity_type == 'PAN':
return self.faker.bothify('?????####?').upper()
elif entity_type == 'AADHAR':
return ' '.join([self.faker.numerify('####') for _ in range(3)])
elif entity_type == 'CREDITCARDNUMBER' or entity_type == 'CREDIT_CARD':
return self.faker.credit_card_number()
elif entity_type == 'ACCOUNTNUMBER' or entity_type == 'IBAN_CODE' or entity_type == 'BANK_NUMBER':
return self.faker.bban()
elif entity_type == 'PASSPORT' or entity_type == 'US_PASSPORT':
return f"{self.faker.random_letter().upper()}{self.faker.random_letter().upper()}{self.faker.numerify('######')}"
elif entity_type == 'DOB' or entity_type == 'DATE_TIME':
return self.faker.date_of_birth(minimum_age=18, maximum_age=90).strftime('%d/%m/%Y')
elif entity_type == 'IPV4' or entity_type == 'IP_ADDRESS':
return self.faker.ipv4()
elif entity_type == 'URL':
return self.faker.url()
elif entity_type == 'PINCODE':
return self.faker.postcode()
elif entity_type == 'CITY' or entity_type == 'LOCATION':
return self.faker.city()
elif entity_type == 'STATE':
return self.faker.state()
elif entity_type == 'SSN' or entity_type == 'US_SSN':
return self.faker.ssn()
elif entity_type == 'DRIVER_LICENSE' or entity_type == 'US_DRIVER_LICENSE':
return self.faker.bothify('?#######')
elif entity_type == 'CRYPTO':
return self.faker.cryptocurrency_code() + self.faker.bothify('??##??##??##??')
# Medical entity generation
elif entity_type == 'DOCTORNAME':
return f"Dr. {self.faker.last_name()}"
elif entity_type == 'PATIENTID' or entity_type == 'MEDICALID':
return self.faker.bothify('PT#######')
elif entity_type == 'HEIGHT':
# Generate a realistic height in feet and inches
feet = self.faker.random_int(min=4, max=6)
inches = self.faker.random_int(min=0, max=11)
return f"{feet}'{inches}\""
elif entity_type == 'WEIGHT':
# Generate a realistic weight in kg
weight = self.faker.random_int(min=45, max=100)
return f"{weight}kg"
elif entity_type == 'BLOOD_TYPE':
# Generate a random blood type
blood_groups = ['A+', 'A-', 'B+', 'B-', 'AB+', 'AB-', 'O+', 'O-']
return self.faker.random_element(blood_groups)
else:
# Fallback for unknown types
return f"[SYNTHETIC_{entity_type}]"
except Exception as e:
print(f"Error generating synthetic value: {str(e)}")
return f"[SYNTHETIC_{entity_type}]"
def process_text(self, text: str, model_type: str = "main", protection_method: str = "replace") -> Dict[str, Any]:
"""
Process text to detect and protect PII
Args:
text: Input text to process
model_type: Type of model to use ("main", "medical")
protection_method: Protection method ("replace", "mask", "synthesize")
Returns:
Dict containing protected text and detected entities
"""
# Step 1: Get entities from regex
regex_entities = self.regex_detection(text)
# Step 2: Get entities from NER model
ner_entities = self.ner_detection(text, model_type)
# Step 3: Combine and process entities
all_entities = regex_entities + ner_entities
merged_entities = self.merge_entities(all_entities)
final_entities = self.remove_overlapping_entities(merged_entities)
# Step 4: Create protected text based on method
protected_text = text
# Sort entities by start position in reverse to avoid index issues when replacing
final_entities_sorted = sorted(final_entities, key=lambda x: x['start'], reverse=True)
if protection_method == "mask":
# Mask with asterisks
for entity in final_entities_sorted:
mask = '*' * len(entity['text'])
protected_text = protected_text[:entity['start']] + mask + protected_text[entity['end']:]
elif protection_method == "synthesize":
# Replace with synthetic values
for entity in final_entities_sorted:
synthetic = self.generate_synthetic_value(entity['label'], entity['text'])
protected_text = protected_text[:entity['start']] + synthetic + protected_text[entity['end']:]
else: # replace (default)
# Replace with entity tags
for entity in final_entities_sorted:
tag = f"[{entity['label']}]"
protected_text = protected_text[:entity['start']] + tag + protected_text[entity['end']:]
# Create findings table
findings = []
for i, entity in enumerate(final_entities):
findings.append({
"index": i,
"entity_type": entity['label'],
"text": entity['text'],
"start": entity['start'],
"end": entity['end'],
"confidence": round(entity.get('score', 1.0), 2)
})
return {
"protected_text": protected_text,
"entities": final_entities,
"findings": findings
}
# Example input text
example_text = """
Hi, my name is John Doe and I'm originally from Delhi.
On 11/10/2024 I visited https://www.google.com and sent an email to abc@gmail.com, from IP 192.168.0.1.
My phone number: +91-1234321216.
"""
medical_example_text = """
Patient name: John Doe
Date of Birth: 05/12/1982
Patient ID: PT789456
Contact: +91-9876543210
Dr. Robert Johnson has prescribed medication penicillin on 12/12/2024.
Blood type: O+, Height: 5'6", Weight: 145kg
"""
# Create Gradio Interface
def process_input(text, model_type, protection_method):
# Initialize pipeline with Hugging Face model paths
main_model_name = "Kashish-jain/pii-protection-model"
medical_model_name = "Kashish-jain/pii-protection-medical"
use_medical = model_type == "medical"
pipeline = EnhancedPiiProtectionPipeline(
main_model_name=main_model_name,
medical_model_name=medical_model_name,
use_medical_model=use_medical
)
# Process the text
result = pipeline.process_text(text, model_type, protection_method)
# Create findings table
if result["findings"]:
df = pd.DataFrame(result["findings"])
df = df.rename(columns={
"index": "#",
"entity_type": "Entity type",
"text": "Text",
"start": "Start",
"end": "End",
"confidence": "Confidence"
})
else:
df = pd.DataFrame(columns=["#", "Entity type", "Text", "Start", "End", "Confidence"])
# Count detected entities by type
if result["findings"]:
entity_counts = df["Entity type"].value_counts().to_dict()
entity_summary = ", ".join([f"{count} {entity}" for entity, count in entity_counts.items()])
else:
entity_summary = "No entities detected"
return result["protected_text"], df, entity_summary
# Update input text based on model type
def update_input_text(model_type):
if model_type == "medical":
return medical_example_text
else:
return example_text
# Custom CSS for a minimalistic, clean design
custom_css = """
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&family=Playfair+Display:wght@400;700&display=swap');
:root {
--font-sans: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, sans-serif;
--font-serif: 'Playfair Display', Georgia, Cambria, 'Times New Roman', Times, serif;
--color-primary: #2563eb;
--color-primary-light: #3b82f6;
--color-primary-dark: #1d4ed8;
--color-secondary: #64748b;
--color-secondary-light: #94a3b8;
--color-background: #00000f;
--color-surface: #f8fafc;
--color-border: #e2e8f0;
--color-text: #1e293b;
--color-text-light: #64748b;
--color-success: #10b981;
--color-warning: #f59e0b;
--color-error: #ef4444;
--shadow-sm: 0 1px 2px 0 rgba(0, 0, 0, 0.05);
--shadow: 0 1px 3px 0 rgba(0, 0, 0, 0.1), 0 1px 2px 0 rgba(0, 0, 0, 0.06);
--shadow-md: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06);
--shadow-lg: 0 10px 15px -3px rgba(0, 0, 0, 0.1), 0 4px 6px -2px rgba(0, 0, 0, 0.05);
--radius-sm: 0.25rem;
--radius: 0.375rem;
--radius-md: 0.5rem;
--radius-lg: 0.75rem;
--spacing-1: 0.25rem;
--spacing-2: 0.5rem;
--spacing-3: 0.75rem;
--spacing-4: 1rem;
--spacing-6: 1.5rem;
--spacing-8: 2rem;
--spacing-12: 3rem;
}
body, .gradio-container {
font-family: var(--font-sans);
color: var(--color-text);
background-color: var(--color-background);
line-height: 1.5;
}
/* Typography */
h1, h2, h3 {
font-family: var(--font-serif);
font-weight: 700;
line-height: 1.2;
margin-bottom: var(--spacing-4);
}
h1 {
font-size: 2.25rem;
color: var(--color-text-light);
}
h2 {
font-size: 1.5rem;
color: var(--color-text);
}
h3 {
font-size: 1.25rem;
color: var(--color-text);
}
p {
margin-bottom: var(--spacing-4);
}
/* Layout Components */
.container {
max-width: 1500px;
margin: 0 auto;
padding: var(--spacing-6);
}
.card {
background-color: var(--color-surface);
border-radius: var(--radius);
box-shadow: var(--shadow);
padding: var(--spacing-6);
margin-bottom: var(--spacing-6);
border: 1px solid var(--color-border);
}
/* Form Elements */
.gradio-button.primary {
background-color: var(--color-secondary-light);
color: white;
font-weight: 500;
border-radius: var(--radius);
padding: var(--spacing-3) var(--spacing-6);
transition: all 0.2s ease;
border: none;
box-shadow: var(--shadow);
}
.gradio-button.primary:hover {
background-color: var(--color-secondary);
box-shadow: var(--shadow-md);
transform: translateY(-1px);
}
.gradio-button.primary:active {
transform: translateY(0);
}
.gradio-dropdown, .gradio-textbox, .gradio-textarea {
border-radius: var(--radius);
border: 1px solid var(--color-border);
padding: var(--spacing-3);
background-color: var(--color-background);
transition: border-color 0.2s ease;
}
.gradio-dropdown:focus, .gradio-textbox:focus, .gradio-textarea:focus {
border-color: var(--color-primary-light);
outline: none;
box-shadow: 0 0 0 3px rgba(37, 99, 235, 0.1);
}
/* Tabs */
.gradio-tabs {
margin-bottom: var(--spacing-6);
}
.gradio-tab-button {
padding: var(--spacing-3) var(--spacing-6);
font-weight: 500;
color: var(--color-text-light);
border-bottom: 2px solid transparent;
transition: all 0.2s ease;
}
.gradio-tab-button.selected {
color: var(--color-primary);
border-bottom-color: var(--color-primary);
}
/* Accordion */
.gradio-accordion {
border: 1px solid var(--color-border);
border-radius: var(--radius);
margin-bottom: var(--spacing-6);
overflow: hidden;
}
.gradio-accordion-header {
padding: var(--spacing-4);
font-weight: 500;
background-color: var(--color-surface);
border-bottom: 1px solid var(--color-border);
cursor: pointer;
}
.gradio-accordion-content {
padding: var(--spacing-4);
background-color: var(--color-background);
}
/* Table */
table {
width: 100%;
border-collapse: collapse;
margin-bottom: var(--spacing-6);
}
th {
background-color: var(--color-surface);
padding: var(--spacing-3) var(--spacing-4);
text-align: left;
font-weight: 600;
color: var(--color-text);
border-bottom: 2px solid var(--color-border);
}
td {
padding: var(--spacing-3) var(--spacing-4);
border-bottom: 1px solid var(--color-border);
}
/* Dark mode support */
@media (prefers-color-scheme: dark) {
:root {
--color-background: #0f172a;
--color-surface: #1e293b;
--color-border: #334155;
--color-text: #f8fafc;
--color-text-light: #cbd5e1;
}
}
/* Custom components */
.entity-badge {
display: inline-block;
padding: 0.25rem 0.5rem;
border-radius: 9999px;
font-size: 0.75rem;
font-weight: 500;
background-color: var(--color-primary-light);
color: white;
margin-right: 0.5rem;
margin-bottom: 0.5rem;
}
.summary-container {
background-color: var(--color-surface);
border-radius: var(--radius);
padding: var(--spacing-4);
margin-bottom: var(--spacing-6);
border: 1px solid var(--color-border);
}
.icon-text {
display: flex;
align-items: center;
gap: var(--spacing-2);
}
.icon-text svg {
width: 1.25rem;
height: 1.25rem;
color: var(--color-primary);
}
/* Responsive adjustments */
@media (max-width: 768px) {
.container {
padding: var(--spacing-4);
}
h1 {
font-size: 1.75rem;
}
.card {
padding: var(--spacing-4);
}
}
"""
# Create the Gradio interface with enhanced styling
with gr.Blocks(css=custom_css, theme=gr.themes.Base()) as demo:
# Header section
with gr.Column(elem_classes="container"):
gr.Markdown("""
# 🛡️ PII Protection Tool
Detect, protect and de-identify personally identifiable information.
""")
# Main content area
with gr.Column(elem_classes="card"):
# Configuration section
with gr.Row():
with gr.Column(scale=1):
model_dropdown = gr.Dropdown(
choices=[
("General Purpose", "main"),
("Medical Context", "medical")
],
value="main",
label="Model Type",
elem_classes="form-control"
)
with gr.Column(scale=1):
protection_dropdown = gr.Dropdown(
choices=[
("Replace with Tags", "replace"),
("Mask with Asterisks", "mask"),
("Generate Synthetic Data", "synthesize")
],
value="replace",
label="Protection Method",
elem_classes="form-control"
)
# Divider
gr.Markdown("---")
# Input/Output section
with gr.Row():
# Input column
with gr.Column():
gr.Markdown("### Input Text")
input_text = gr.TextArea(
label="",
value=example_text,
lines=10,
elem_classes="text-input"
)
# Output column
with gr.Column():
gr.Markdown("### Protected Output")
output_text = gr.TextArea(
label="",
lines=10,
elem_classes="text-output"
)
# Summary section
with gr.Column(elem_classes="summary-container"):
gr.Markdown("### Entity Summary")
entity_summary = gr.Textbox(
label="",
interactive=False,
elem_classes="entity-summary"
)
# Action button
submit_btn = gr.Button(
"Process Text",
variant="primary",
elem_classes="submit-button"
)
# Findings section
with gr.Column(elem_classes="card"):
gr.Markdown("### Detected Entities")
findings_table = gr.DataFrame(
headers=["#", "Entity type", "Text", "Start", "End", "Confidence"],
elem_classes="findings-table"
)
# Help section
with gr.Accordion("Help & Information", open=False, elem_classes="help-accordion"):
gr.Markdown("""
#### De-identification Methods
- **Replace with Tags**: Replaces each detected entity with its entity type tag (e.g., [NAME])
- **Mask with Asterisks**: Replaces each detected entity with asterisks (*)
- **Generate Synthetic Data**: Replaces each detected entity with realistic synthetic data
#### Model Types
- **General Purpose**: Optimized for common PII elements
- **Medical Context**: Enhanced detection for healthcare-related PII
#### Entity Types Detected
- **Personal**: NAME, EMAIL, PHONENUMBER, DOB
- **Financial**: CREDITCARDNUMBER, ACCOUNTNUMBER, PAN, IBAN_CODE, SSN
- **Location**: ADDRESS, CITY, STATE, PINCODE, IPV4
- **Medical**: DOCTORNAME, PATIENTID, MEDICALID
- **Other**: URL, PASSPORT, DRIVER_LICENSE
""")
# Set up event handlers
submit_btn.click(
fn=process_input,
inputs=[input_text, model_dropdown, protection_dropdown],
outputs=[output_text, findings_table, entity_summary]
)
model_dropdown.change(
fn=update_input_text,
inputs=[model_dropdown],
outputs=[input_text]
)
# Launch the app
if __name__ == "__main__":
demo.launch()