File size: 56,533 Bytes
d329cd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddde77a
 
b2300b6
d329cd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
# Tone Classification System
# This implementation combines text and acoustic features to detect emotions,
# including sarcasm and figures of speech
# Part 1: Install required packages with improved error handling
import sys
import os

# Function to install packages with error handling
def install_packages():
    packages = [
        "hf_xet","transformers", "pytorch-lightning", "datasets",
        "numpy", "pandas", "matplotlib", "seaborn",
        "librosa", "opensmile", "torch", "torchaudio",
        "accelerate", "nltk", "scikit-learn"
    ]

    for package in packages:
        try:
            print(f"Installing {package}...")
            import subprocess
            # Install a package quietly
            subprocess.run([sys.executable, '-m', 'pip', 'install', package, '-q'])
            print(f"Successfully installed {package}")
        except Exception as e:
            print(f"Error installing {package}: {e}")

    print("Package installation completed!")

install_packages()

# Part 2: Import libraries with error handling
import numpy as np
import pandas as pd
import torch
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, classification_report
from torch.utils.data import Dataset, DataLoader
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

# Check for CUDA availability
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Using device: {DEVICE}")

# Try to import libraries that might cause issues with specific error handling
try:
    import torchaudio
    print("Successfully imported torchaudio")
except Exception as e:
    print(f"Error importing torchaudio: {e}")
    print("Some audio functionality may be limited")

try:
    import librosa
    print("Successfully imported librosa")
except Exception as e:
    print(f"Error importing librosa: {e}")
    print("Audio processing capabilities will be limited")

try:
    import opensmile
    print("Successfully imported opensmile")
except Exception as e:
    print(f"Error importing opensmile: {e}")
    print("Will use fallback feature extraction methods")

# Part 3: Define constants
EMOTIONS = ["neutral", "happy", "sad", "angry", "fearful", "disgust", "surprised", "sarcastic"]
MODEL_CACHE_DIR = "./model_cache"

# Create cache directory if it doesn't exist
os.makedirs(MODEL_CACHE_DIR, exist_ok=True)
print(f"Using model cache directory: {MODEL_CACHE_DIR}")

# Part 4: Model Loading with Error Handling and Cache
def load_model_with_cache(model_class, model_name, cache_subdir=""):
    """Load a model with proper error handling and caching"""
    cache_path = os.path.join(MODEL_CACHE_DIR, cache_subdir)
    os.makedirs(cache_path, exist_ok=True)

    print(f"Loading model: {model_name}")
    try:
        model = model_class.from_pretrained(
            model_name,
            cache_dir=cache_path,
            local_files_only=os.path.exists(os.path.join(cache_path, model_name.replace('/', '-')))
        )
        print(f"Successfully loaded model: {model_name}")
        return model
    except KeyboardInterrupt:
        print("\nModel download interrupted. Try again or download manually.")
        return None
    except Exception as e:
        print(f"Error loading model {model_name}: {e}")
        print("Will try to continue with limited functionality.")
        return None

# Part 5: Modified Whisper Transcriber with Error Handling
class WhisperTranscriber:
    def __init__(self, model_size="tiny"):  # Changed from base to tiny for faster loading
        from transformers import WhisperProcessor, WhisperForConditionalGeneration
        print("Initializing Whisper transcriber...")

        try:
            self.processor = load_model_with_cache(
                WhisperProcessor,
                f"openai/whisper-{model_size}",
                "whisper"
            )
            self.model = load_model_with_cache(
                WhisperForConditionalGeneration,
                f"openai/whisper-{model_size}",
                "whisper"
            )

            if self.model is not None:
                self.model = self.model.to(DEVICE)
                print("Whisper model loaded successfully and moved to device")
            else:
                print("Failed to load Whisper model")

        except Exception as e:
            print(f"Error initializing Whisper: {e}")
            self.processor = None
            self.model = None

    def transcribe(self, audio_path):
        if self.processor is None or self.model is None:
            print("Whisper not properly initialized. Cannot transcribe.")
            return "Error: Transcription failed."

        try:
            # Load audio
            waveform, sample_rate = librosa.load(audio_path, sr=16000)

            # Process audio
            input_features = self.processor(waveform, sampling_rate=16000, return_tensors="pt").input_features.to(DEVICE)

            # Generate transcription
            with torch.no_grad():
                predicted_ids = self.model.generate(input_features, max_length=100)

            # Decode the transcription
            transcription = self.processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
            return transcription

        except Exception as e:
            print(f"Error in transcription: {e}")
            return "Error: Transcription failed."

# Part 6: Text-based Emotion Analysis with Fallback Options
# Improved Text-based Emotion Analysis
class TextEmotionClassifier:
    def __init__(self):
        from transformers import AutoTokenizer, AutoModelForSequenceClassification
        print("Initializing text emotion classifier...")

        # Primary emotion model
        self.emotion_model_name = "j-hartmann/emotion-english-distilroberta-base"
        self.tokenizer = load_model_with_cache(
            AutoTokenizer,
            self.emotion_model_name,
            "text_emotion"
        )
        self.model = load_model_with_cache(
            AutoModelForSequenceClassification,
            self.emotion_model_name,
            "text_emotion"
        )

        if self.model is not None:
            self.model = self.model.to(DEVICE)

        # Sentiment model for sarcasm detection
        self.sentiment_model_name = "cardiffnlp/twitter-roberta-base-sentiment"
        self.sarcasm_tokenizer = load_model_with_cache(
            AutoTokenizer,
            self.sentiment_model_name,
            "sentiment"
        )
        self.sarcasm_model = load_model_with_cache(
            AutoModelForSequenceClassification,
            self.sentiment_model_name,
            "sentiment"
        )

        if self.sarcasm_model is not None:
            self.sarcasm_model = self.sarcasm_model.to(DEVICE)

        # Enhanced keyword-based analyzer as fallback and enhancement
        self.keyword_analyzer = EnhancedKeywordEmotionAnalyzer()

    def predict_emotion(self, text):
        if self.tokenizer is None or self.model is None:
            print("Text emotion model not properly initialized.")
            # Use keyword-based analysis as primary method in this case
            return self.keyword_analyzer.analyze(text)

        try:
            # Get model predictions
            inputs = self.tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(DEVICE)
            with torch.no_grad():
                outputs = self.model(**inputs)

            # Get probabilities from model
            model_probs = F.softmax(outputs.logits, dim=1).cpu().numpy()[0]

            # Get keyword-based analysis
            keyword_probs = self.keyword_analyzer.analyze(text)

            # Combine both methods with weighting
            # If text contains strong emotional keywords, give more weight to keyword analysis
            keyword_strength = self.keyword_analyzer.get_keyword_strength(text)

            # Adaptive weighting based on keyword strength
            keyword_weight = min(0.6, keyword_strength * 0.1)  # Cap at 0.6
            model_weight = 1.0 - keyword_weight

            # Combine predictions
            combined_probs = (model_weight * model_probs) + (keyword_weight * keyword_probs)

            # Normalize to ensure sum is 1
            combined_probs = combined_probs / np.sum(combined_probs)

            return combined_probs

        except Exception as e:
            print(f"Error in text emotion prediction: {e}")
            # Fallback to keyword analysis
            return self.keyword_analyzer.analyze(text)

    def detect_sarcasm(self, text):
        if self.sarcasm_tokenizer is None or self.sarcasm_model is None:
            print("Sarcasm model not properly initialized.")
            # Use keyword-based sarcasm detection as fallback
            return self.keyword_analyzer.detect_sarcasm(text)

        try:
            inputs = self.sarcasm_tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(DEVICE)
            with torch.no_grad():
                outputs = self.sarcasm_model(**inputs)

            sentiment_probs = F.softmax(outputs.logits, dim=1).cpu().numpy()[0]

            # Enhance with keyword-based sarcasm detection
            keyword_sarcasm = self.keyword_analyzer.detect_sarcasm(text)

            # If keyword analysis strongly suggests sarcasm, blend with model prediction
            if keyword_sarcasm[2] > 0.5:  # If sarcasm probability is high from keywords
                # Give 40% weight to keyword analysis
                combined_probs = 0.6 * sentiment_probs + 0.4 * keyword_sarcasm
                return combined_probs

            return sentiment_probs

        except Exception as e:
            print(f"Error in sarcasm detection: {e}")
            # Fallback to keyword analysis
            return self.keyword_analyzer.detect_sarcasm(text)

# Enhanced keyword-based emotion analyzer
class EnhancedKeywordEmotionAnalyzer:
    def __init__(self):
        # Enhanced emotion keywords with weights
        self.emotion_keywords = {
            "happy": [
                ("happy", 1.0), ("joy", 1.0), ("delight", 0.9), ("excited", 0.9),
                ("glad", 0.8), ("pleased", 0.8), ("cheerful", 0.9), ("smile", 0.7),
                ("enjoy", 0.8), ("wonderful", 0.8), ("great", 0.7), ("excellent", 0.8),
                ("thrilled", 1.0), ("ecstatic", 1.0), ("content", 0.7), ("satisfied", 0.7),
                ("pleasure", 0.8), ("fantastic", 0.9), ("awesome", 0.9), ("love", 0.9),
                ("amazing", 0.9), ("perfect", 0.8), ("fun", 0.8), ("delighted", 1.0)
            ],
            "sad": [
                ("sad", 1.0), ("unhappy", 0.9), ("depressed", 1.0), ("sorrow", 1.0),
                ("grief", 1.0), ("tearful", 0.9), ("miserable", 1.0), ("disappointed", 0.8),
                ("upset", 0.8), ("down", 0.7), ("heartbroken", 1.0), ("gloomy", 0.9),
                ("devastated", 1.0), ("hurt", 0.8), ("blue", 0.7), ("regret", 0.8),
                ("dejected", 0.9), ("dismal", 0.9), ("lonely", 0.8), ("terrible", 0.8),
                ("hopeless", 0.9), ("lost", 0.7), ("crying", 0.9), ("tragic", 0.9)
            ],
            "angry": [
                ("angry", 1.0), ("mad", 0.9), ("furious", 1.0), ("annoyed", 0.8),
                ("irritated", 0.8), ("enraged", 1.0), ("livid", 1.0), ("outraged", 1.0),
                ("frustrated", 0.8), ("infuriated", 1.0), ("pissed", 0.9), ("hate", 0.9),
                ("hostile", 0.9), ("bitter", 0.8), ("resentful", 0.8), ("fuming", 0.9),
                ("irate", 1.0), ("outraged", 1.0), ("seething", 1.0), ("cross", 0.7),
                ("exasperated", 0.8), ("disgusted", 0.8), ("indignant", 0.9), ("rage", 1.0)
            ],
            "fearful": [
                ("afraid", 1.0), ("scared", 1.0), ("frightened", 1.0), ("fear", 0.9),
                ("terror", 1.0), ("panic", 1.0), ("horrified", 1.0), ("worried", 0.8),
                ("anxious", 0.9), ("nervous", 0.8), ("terrified", 1.0), ("dread", 0.9),
                ("alarmed", 0.8), ("petrified", 1.0), ("threatened", 0.8), ("intimidated", 0.8),
                ("apprehensive", 0.8), ("uneasy", 0.7), ("tense", 0.7), ("stressed", 0.7),
                ("spooked", 0.9), ("paranoid", 0.9), ("freaked", 0.9), ("jumpy", 0.8)
            ],
            "disgust": [
                ("disgust", 1.0), ("gross", 0.9), ("repulsed", 1.0), ("revolted", 1.0),
                ("sick", 0.8), ("nauseous", 0.8), ("yuck", 0.9), ("ew", 0.8),
                ("nasty", 0.9), ("repugnant", 1.0), ("foul", 0.9), ("appalled", 0.9),
                ("sickened", 0.9), ("offended", 0.8), ("distaste", 0.9), ("aversion", 0.9),
                ("abhorrent", 1.0), ("odious", 1.0), ("repellent", 1.0), ("objectionable", 0.8),
                ("detestable", 1.0), ("loathsome", 1.0), ("vile", 1.0), ("horrid", 0.9)
            ],
            "surprised": [
                ("surprised", 1.0), ("shocked", 0.9), ("astonished", 1.0), ("amazed", 0.9),
                ("startled", 0.9), ("stunned", 0.9), ("speechless", 0.8), ("unexpected", 0.8),
                ("wow", 0.8), ("whoa", 0.8), ("unbelievable", 0.8), ("incredible", 0.8),
                ("dumbfounded", 1.0), ("flabbergasted", 1.0), ("staggered", 0.9), ("aghast", 0.9),
                ("astounded", 1.0), ("taken aback", 0.9), ("disbelief", 0.8), ("bewildered", 0.8),
                ("thunderstruck", 1.0), ("wonder", 0.7), ("sudden", 0.6), ("jaw-dropping", 0.9)
            ],
            "neutral": [
                ("okay", 0.7), ("fine", 0.7), ("alright", 0.7), ("normal", 0.8),
                ("calm", 0.8), ("steady", 0.8), ("balanced", 0.8), ("ordinary", 0.8),
                ("routine", 0.8), ("regular", 0.8), ("standard", 0.8), ("moderate", 0.8),
                ("usual", 0.8), ("typical", 0.8), ("average", 0.8), ("common", 0.8),
                ("so-so", 0.7), ("fair", 0.7), ("acceptable", 0.7), ("stable", 0.8),
                ("unchanged", 0.8), ("plain", 0.7), ("mild", 0.7), ("middle-of-the-road", 0.8)
            ],
            "sarcastic": [
                ("yeah right", 1.0), ("sure thing", 0.9), ("oh great", 0.9), ("how wonderful", 0.9),
                ("wow", 0.7), ("really", 0.7), ("obviously", 0.8), ("definitely", 0.7),
                ("of course", 0.7), ("totally", 0.7), ("exactly", 0.7), ("perfect", 0.7),
                ("brilliant", 0.8), ("genius", 0.8), ("whatever", 0.8), ("right", 0.7),
                ("nice job", 0.8), ("good one", 0.8), ("bravo", 0.8), ("slow clap", 1.0),
                ("im shocked", 0.9), ("never would have guessed", 0.9), ("shocking", 0.7), ("unbelievable", 0.7)
            ]
        }

        # Sarcasm indicators
        self.sarcasm_indicators = [
            "yeah right", "sure thing", "oh great", "riiiight", "suuure",
            "*slow clap*", "/s", "wow just wow", "you don't say", "no kidding",
            "what a surprise", "shocker", "congratulations", "well done", "genius",
            "oh wow", "oh really", "totally", "absolutely", "clearly", "obviously",
            "genius idea", "brilliant plan", "fantastic job", "amazing work"
        ]

        # Negation words
        self.negations = [
            "not", "no", "never", "none", "nothing", "neither", "nor", "nowhere",
            "hardly", "scarcely", "barely", "doesn't", "isn't", "wasn't", "shouldn't",
            "wouldn't", "couldn't", "won't", "can't", "don't", "didn't", "haven't"
        ]

        # Intensifiers
        self.intensifiers = [
            "very", "really", "extremely", "absolutely", "completely", "totally",
            "utterly", "quite", "particularly", "especially", "remarkably", "truly",
            "so", "too", "such", "incredibly", "exceedingly", "extraordinarily"
        ]

        # Compile patterns for more efficient matching
        import re
        self.emotion_patterns = {}
        for emotion, keywords in self.emotion_keywords.items():
            self.emotion_patterns[emotion] = [
                (re.compile(r'\b' + re.escape(word) + r'\b', re.IGNORECASE), weight)
                for word, weight in keywords
            ]

        self.negation_pattern = re.compile(r'\b(' + '|'.join(re.escape(n) for n in self.negations) + r')\s+(\w+)', re.IGNORECASE)
        self.intensifier_pattern = re.compile(r'\b(' + '|'.join(re.escape(i) for i in self.intensifiers) + r')\s+(\w+)', re.IGNORECASE)

    def analyze(self, text):
        """
        Analyze text for emotions using enhanced keyword matching
        Returns numpy array of emotion probabilities
        """
        # Initialize scores
        emotion_scores = {emotion: 0.0 for emotion in EMOTIONS}

        # Set base score for neutral
        emotion_scores["neutral"] = 1.0

        # Convert to lowercase for case-insensitive matching
        text_lower = text.lower()

        # Process each emotion
        for emotion, patterns in self.emotion_patterns.items():
            for pattern, weight in patterns:
                matches = pattern.findall(text_lower)
                if matches:
                    # Add score based on number of matches and their weights
                    emotion_scores[emotion] += len(matches) * weight

        # Process negations - look for "not happy" patterns
        negation_matches = self.negation_pattern.finditer(text_lower)
        for match in negation_matches:
            negation, word = match.groups()
            # Check if the negated word is in any emotion keywords
            for emotion, keywords in self.emotion_keywords.items():
                if any(word == kw[0] for kw in keywords):
                    # Reduce score for this emotion and slightly increase opposite emotions
                    emotion_scores[emotion] -= 0.7

                    # Increase opposite emotions (e.g., if "not happy", increase "sad")
                    if emotion == "happy":
                        emotion_scores["sad"] += 0.3
                    elif emotion == "sad":
                        emotion_scores["happy"] += 0.3

        # Process intensifiers - "very happy" should increase score
        intensifier_matches = self.intensifier_pattern.finditer(text_lower)
        for match in intensifier_matches:
            intensifier, word = match.groups()
            # Check if the intensified word is in any emotion keywords
            for emotion, keywords in self.emotion_keywords.items():
                if any(word == kw[0] for kw in keywords):
                    # Increase score for this emotion
                    emotion_scores[emotion] += 0.5

        # Ensure no negative scores
        for emotion in emotion_scores:
            emotion_scores[emotion] = max(0, emotion_scores[emotion])

        # Normalize to probabilities
        total = sum(emotion_scores.values())
        if total > 0:
            probs = {emotion: score/total for emotion, score in emotion_scores.items()}
        else:
            # If no emotions detected, default to neutral
            probs = {emotion: 0.0 for emotion in EMOTIONS}
            probs["neutral"] = 1.0

        # Convert to numpy array in the same order as EMOTIONS
        return np.array([probs[emotion] for emotion in EMOTIONS])

    def detect_sarcasm(self, text):
        """
        Detect sarcasm in text
        Returns [negative, neutral, positive] probability array where high "positive"
        with negative context indicates sarcasm
        """
        text_lower = text.lower()
        sarcasm_score = 0.0

        # Check for direct sarcasm indicators
        for indicator in self.sarcasm_indicators:
            if indicator in text_lower:
                sarcasm_score += 0.3

        # Check for common sarcasm patterns
        positive_words = [kw[0] for kw in self.emotion_keywords["happy"]]
        has_positive = any(word in text_lower for word in positive_words)

        negative_context = any(neg in text_lower for neg in ["terrible", "awful", "horrible", "fail", "disaster", "mess"])

        # Positive words in negative context suggests sarcasm
        if has_positive and negative_context:
            sarcasm_score += 0.4

        # Check for excessive punctuation which might indicate sarcasm
        if "!!!" in text or "?!" in text:
            sarcasm_score += 0.2

        # Cap the score
        sarcasm_score = min(1.0, sarcasm_score)

        # If sarcasm detected, return sentiment array biased toward sarcasm
        # [negative, neutral, positive] - high positive with negative context indicates sarcasm
        if sarcasm_score > 0.3:
            return np.array([0.1, 0.1, 0.8])  # High positive signal for sarcasm detection
        else:
            # Return balanced array (no strong indication of sarcasm)
            return np.array([0.33, 0.34, 0.33])

    def get_keyword_strength(self, text):
        """
        Measure the strength of emotional keywords in the text
        Returns a value between 0 and 10
        """
        text_lower = text.lower()
        total_matches = 0
        weighted_matches = 0

        # Count all matches across all emotions with their weights
        for emotion, patterns in self.emotion_patterns.items():
            for pattern, weight in patterns:
                matches = pattern.findall(text_lower)
                total_matches += len(matches)
                weighted_matches += len(matches) * weight

        # Calculate strength score on a scale of 0-10
        if total_matches > 0:
            avg_weight = weighted_matches / total_matches
            # Scale based on number of matches and their average weight
            strength = min(10, (total_matches * avg_weight) / 2)
            return strength
        else:
            return 0.0

# Part 7: Acoustic Feature Extraction with Fallback
class AcousticFeatureExtractor:
    def __init__(self):
        self.use_opensmile = True
        try:
            import opensmile
            # Initialize OpenSMILE with the eGeMAPS feature set instead of ComParE_2016
            # eGeMAPS is specifically designed for voice analysis and emotion recognition
            self.smile = opensmile.Smile(
                feature_set=opensmile.FeatureSet.eGeMAPSv02,
                feature_level=opensmile.FeatureLevel.Functionals,
            )
            print("OpenSMILE feature extractor initialized successfully with eGeMAPS")
        except Exception as e:
            print(f"Failed to initialize OpenSMILE: {e}")
            print("Using librosa for feature extraction instead.")
            self.use_opensmile = False

    def extract_features(self, audio_path):
        try:
            if self.use_opensmile:
                # Use OpenSMILE for feature extraction
                features = self.smile.process_file(audio_path)
                return features.values
            else:
                # Fallback to improved librosa feature extraction
                return self._extract_librosa_features(audio_path)
        except Exception as e:
            print(f"Error in acoustic feature extraction: {e}")
            print("Using dummy features as fallback")
            # Return dummy features in case of error
            return np.zeros(88)  # eGeMAPS dimension

    def _extract_librosa_features(self, audio_path):
        """Improved librosa feature extraction focusing on emotion-relevant features"""
        try:
            # Load audio
            y, sr = librosa.load(audio_path, sr=22050)
            
            # Extract features specifically relevant to emotion detection
            
            # 1. Pitch features (fundamental frequency)
            pitches, magnitudes = librosa.piptrack(y=y, sr=sr)
            pitch_mean = np.mean(pitches[magnitudes > np.median(magnitudes)])
            pitch_std = np.std(pitches[magnitudes > np.median(magnitudes)])
            
            # 2. Energy/intensity features
            rms = librosa.feature.rms(y=y)[0]
            energy_mean = np.mean(rms)
            energy_std = np.std(rms)
            
            # 3. Tempo and rhythm features
            tempo, _ = librosa.beat.beat_track(y=y, sr=sr)
            
            # 4. Spectral features
            spectral_centroid = librosa.feature.spectral_centroid(y=y, sr=sr)[0]
            spectral_bandwidth = librosa.feature.spectral_bandwidth(y=y, sr=sr)[0]
            spectral_rolloff = librosa.feature.spectral_rolloff(y=y, sr=sr)[0]
            
            # 5. Voice quality features
            zero_crossing_rate = librosa.feature.zero_crossing_rate(y)[0]
            
            # Compute statistics for each feature
            features = []
            for feature in [spectral_centroid, spectral_bandwidth, spectral_rolloff, zero_crossing_rate]:
                features.extend([np.mean(feature), np.std(feature), np.min(feature), np.max(feature)])
            
            # Add pitch and energy features
            features.extend([pitch_mean, pitch_std, energy_mean, energy_std, tempo])
            
            # Add MFCCs (critical for speech emotion)
            mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13)
            for mfcc in mfccs:
                features.extend([np.mean(mfcc), np.std(mfcc)])
            
            # Convert to numpy array
            features = np.array(features)
            
            # Handle NaN values
            features = np.nan_to_num(features)
            
            # Pad or truncate to match eGeMAPS dimension (88)
            if len(features) < 88:
                features = np.pad(features, (0, 88 - len(features)))
            else:
                features = features[:88]
                
            return features

        except Exception as e:
            print(f"Error in librosa feature extraction: {e}")
            return np.zeros(88)  # Same dimension as eGeMAPS


# Part 8: Acoustic Emotion Classifier
class AcousticEmotionClassifier(nn.Module):
    def __init__(self, input_dim, hidden_dim=128, num_classes=len(EMOTIONS)):
        super().__init__()
        
        # Normalize input features
        self.batch_norm = nn.BatchNorm1d(input_dim)
        
        # Feature extraction layers
        self.feature_extractor = nn.Sequential(
            nn.Linear(input_dim, hidden_dim * 2),
            nn.ReLU(),
            nn.Dropout(0.3),
            nn.Linear(hidden_dim * 2, hidden_dim),
            nn.ReLU(),
            nn.Dropout(0.3)
        )
        
        # Emotion classification head
        self.classifier = nn.Sequential(
            nn.Linear(hidden_dim, hidden_dim // 2),
            nn.ReLU(),
            nn.Dropout(0.2),
            nn.Linear(hidden_dim // 2, num_classes)
        )
        
        # Initialize weights properly
        self._init_weights()
    
    def _init_weights(self):
        """Initialize weights with Xavier initialization"""
        for m in self.modules():
            if isinstance(m, nn.Linear):
                nn.init.xavier_uniform_(m.weight)
                if m.bias is not None:
                    nn.init.zeros_(m.bias)
    
    def forward(self, x):
        # Handle different input shapes
        if len(x.shape) == 1:
            x = x.unsqueeze(0)  # Add batch dimension
        
        # Normalize features
        x = self.batch_norm(x)
        
        # Extract features
        features = self.feature_extractor(x)
        
        # Classify emotions
        output = self.classifier(features)
        
        return output


class PretrainedAudioClassifier:
    """A rule-based classifier for audio emotion detection until proper training"""
    
    def __init__(self):
        # Define acoustic feature thresholds for emotions based on research
        # These are simplified heuristics based on acoustic phonetics research
        self.feature_thresholds = {
            "happy": {
                "pitch_mean": (220, 400),  # Higher pitch for happiness
                "energy_mean": (0.6, 1.0),  # Higher energy
                "speech_rate": (0.8, 1.0)   # Faster speech rate
            },
            "sad": {
                "pitch_mean": (100, 220),   # Lower pitch for sadness
                "energy_mean": (0.1, 0.5),  # Lower energy
                "speech_rate": (0.3, 0.7)   # Slower speech rate
            },
            "angry": {
                "pitch_mean": (250, 400),   # Higher pitch for anger
                "energy_mean": (0.7, 1.0),  # Higher energy
                "speech_rate": (0.7, 1.0)   # Faster speech rate
            },
            "fearful": {
                "pitch_mean": (200, 350),   # Higher pitch
                "energy_mean": (0.4, 0.8),  # Medium energy
                "speech_rate": (0.6, 0.9)   # Medium-fast speech rate
            },
            "neutral": {
                "pitch_mean": (180, 240),   # Medium pitch
                "energy_mean": (0.3, 0.6),  # Medium energy
                "speech_rate": (0.4, 0.7)   # Medium speech rate
            }
        }
    
    def extract_key_features(self, audio_path):
        """Extract key acoustic features for rule-based classification"""
        try:
            y, sr = librosa.load(audio_path, sr=22050)
            
            # Extract pitch
            pitches, magnitudes = librosa.piptrack(y=y, sr=sr)
            pitch_mean = np.mean(pitches[magnitudes > 0.1]) if np.any(magnitudes > 0.1) else 200
            
            # Normalize pitch to 0-1 range (assuming human pitch range 80-400 Hz)
            pitch_mean_norm = (pitch_mean - 80) / (400 - 80)
            pitch_mean_norm = max(0, min(1, pitch_mean_norm))
            
            # Extract energy
            rms = librosa.feature.rms(y=y)[0]
            energy_mean = np.mean(rms)
            
            # Normalize energy
            energy_mean_norm = energy_mean / 0.1  # Assuming 0.1 is a reasonable max RMS
            energy_mean_norm = max(0, min(1, energy_mean_norm))
            
            # Estimate speech rate from onsets
            onset_env = librosa.onset.onset_strength(y=y, sr=sr)
            onsets = librosa.onset.onset_detect(onset_envelope=onset_env, sr=sr)
            if len(onsets) > 1:
                speech_rate = len(onsets) / (len(y) / sr)  # Onsets per second
                speech_rate_norm = min(1.0, speech_rate / 5.0)  # Normalize, assuming 5 onsets/sec is fast
            else:
                speech_rate_norm = 0.5  # Default to medium if can't detect
            
            return {
                "pitch_mean": pitch_mean_norm,
                "energy_mean": energy_mean_norm,
                "speech_rate": speech_rate_norm
            }
            
        except Exception as e:
            print(f"Error extracting key features: {e}")
            return {
                "pitch_mean": 0.5,  # Default to medium values
                "energy_mean": 0.5,
                "speech_rate": 0.5
            }
    
    def predict(self, audio_path):
        """Predict emotion based on acoustic features"""
        # Extract key features
        features = self.extract_key_features(audio_path)
        
        # Calculate match scores for each emotion
        emotion_scores = {}
        for emotion, thresholds in self.feature_thresholds.items():
            score = 0
            for feature, (min_val, max_val) in thresholds.items():
                # Normalize threshold to 0-1 range
                min_norm = (min_val - 80) / (400 - 80) if feature == "pitch_mean" else min_val
                max_norm = (max_val - 80) / (400 - 80) if feature == "pitch_mean" else max_val
                
                # Check if feature is in the emotion's range
                if min_norm <= features[feature] <= max_norm:
                    # Higher score if closer to the middle of the range
                    middle = (min_norm + max_norm) / 2
                    distance = abs(features[feature] - middle) / ((max_norm - min_norm) / 2)
                    feature_score = 1 - distance
                    score += feature_score
                else:
                    # Penalty for being outside the range
                    score -= 0.5
            
            emotion_scores[emotion] = max(0, score)
        
        # Add small values for other emotions not in our basic set
        for emotion in EMOTIONS:
            if emotion not in emotion_scores:
                emotion_scores[emotion] = 0.1
        
        # Normalize scores to probabilities
        total = sum(emotion_scores.values())
        if total > 0:
            probs = {emotion: score/total for emotion, score in emotion_scores.items()}
        else:
            # Default to neutral if all scores are 0
            probs = {emotion: 0.1 for emotion in EMOTIONS}
            probs["neutral"] = 0.5
        
        # Convert to array in the same order as EMOTIONS
        return np.array([probs[emotion] for emotion in EMOTIONS])




# Part 9: Improved Fusion Model for combining text and acoustic predictions
class AdaptiveModalityFusionModel(nn.Module):
    def __init__(self, text_dim, acoustic_dim, hidden_dim=128, num_classes=len(EMOTIONS)):
        super().__init__()
        
        # Confidence estimators for each modality
        self.text_confidence = nn.Sequential(
            nn.Linear(text_dim, hidden_dim),
            nn.ReLU(),
            nn.Linear(hidden_dim, 1),
            nn.Sigmoid()
        )
        
        self.acoustic_confidence = nn.Sequential(
            nn.Linear(acoustic_dim, hidden_dim),
            nn.ReLU(),
            nn.Linear(hidden_dim, 1),
            nn.Sigmoid()
        )
        
        # Feature transformation
        self.text_transform = nn.Linear(text_dim, hidden_dim)
        self.acoustic_transform = nn.Linear(acoustic_dim, hidden_dim)
        
        # Final classifier
        self.classifier = nn.Sequential(
            nn.Linear(hidden_dim, num_classes),
            nn.Softmax(dim=1)
        )
        
        # Initialize weights
        self._init_weights()
    
    def _init_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Linear):
                nn.init.xavier_uniform_(m.weight)
                if m.bias is not None:
                    nn.init.zeros_(m.bias)
    
    def forward(self, text_features, acoustic_features):
        # Estimate confidence for each modality
        text_conf = self.text_confidence(text_features)
        acoustic_conf = self.acoustic_confidence(acoustic_features)
        
        # Normalize confidences to sum to 1
        total_conf = text_conf + acoustic_conf
        text_weight = text_conf / total_conf
        acoustic_weight = acoustic_conf / total_conf
        
        # Transform features
        text_transformed = self.text_transform(text_features)
        acoustic_transformed = self.acoustic_transform(acoustic_features)
        
        # Weighted combination
        combined = text_weight * text_transformed + acoustic_weight * acoustic_transformed
        
        # Classification
        output = self.classifier(combined)
        
        return output


# Part 10: Simple Rule-based Fallback Classifier
class RuleBasedClassifier:
    """A simple rule-based classifier for fallback when models fail"""

    def predict(self, text):
        """Predict emotion based on simple word matching"""
        text = text.lower()

        # Simple emotion keywords
        emotion_keywords = {
            "happy": ["happy", "joy", "delight", "excited", "glad", "pleased", "cheerful", "smile"],
            "sad": ["sad", "unhappy", "depressed", "sorrow", "grief", "tearful", "miserable"],
            "angry": ["angry", "mad", "furious", "annoyed", "irritated", "enraged", "livid"],
            "fearful": ["afraid", "scared", "frightened", "fear", "terror", "panic", "horrified"],
            "disgust": ["disgust", "gross", "repulsed", "revolted", "sick", "nauseous"],
            "surprised": ["surprised", "shocked", "astonished", "amazed", "startled"],
            "sarcastic": ["yeah right", "sure thing", "oh great", "wow", "really", "obviously"]
        }

        # Count matches for each emotion
        emotion_scores = {emotion: 0 for emotion in EMOTIONS}
        emotion_scores["neutral"] = 1  # Default to neutral

        for emotion, keywords in emotion_keywords.items():
            for keyword in keywords:
                if keyword in text:
                    emotion_scores[emotion] += 1

        # Return the emotion with highest score
        max_emotion = max(emotion_scores, key=emotion_scores.get)

        # Convert to probabilities
        total = sum(emotion_scores.values())
        probs = {emotion: score/total for emotion, score in emotion_scores.items()}

        return max_emotion, probs

# Part 11: Complete Emotion Recognition Pipeline with Comprehensive Error Handling
class EmotionRecognitionPipeline:
    def __init__(self, acoustic_model_path=None, fusion_model_path=None):
        try:
            print("Initializing Improved Emotion Recognition Pipeline...")
            
            # Initialize transcriber
            self.transcriber = WhisperTranscriber()
            
            # Initialize text classifier
            self.text_classifier = TextEmotionClassifier()
            
            # Initialize feature extractor with improved features
            self.feature_extractor = AcousticFeatureExtractor()
            
            # Initialize rule-based audio classifier as fallback
            self.rule_based_audio = PretrainedAudioClassifier()
            
            # Initialize simple rule-based fallback
            self.rule_based = RuleBasedClassifier()
            
            # Define simple fusion strategy
            self.use_adaptive_fusion = False
            
            print("Improved Emotion Recognition Pipeline initialized successfully")
        except Exception as e:
            print(f"Error initializing pipeline: {e}")
            print("Some functionality may be limited")
    
    def predict(self, audio_path):
        results = {
            "transcription": "",
            "text_emotions": {emotion: 0.0 for emotion in EMOTIONS},
            "acoustic_emotions": {emotion: 0.0 for emotion in EMOTIONS},
            "final_emotions": {emotion: 0.0 for emotion in EMOTIONS},
            "predicted_emotion": "neutral",
            "is_sarcastic": False,
            "errors": []
        }
        
        # Step 1: Transcribe audio
        try:
            transcription = self.transcriber.transcribe(audio_path)
            results["transcription"] = transcription
            print(f"Transcription: {transcription}")
        except Exception as e:
            error_msg = f"Failed to transcribe audio: {e}"
            print(error_msg)
            results["errors"].append(error_msg)
            results["transcription"] = "Error: Could not transcribe audio"
        
        # Step 2: Analyze text emotions
        try:
            if results["transcription"].startswith("Error:"):
                # Skip text analysis if transcription failed
                text_emotions = np.ones(len(EMOTIONS)) / len(EMOTIONS)  # Equal probabilities
                sarcasm_indicators = np.array([0.33, 0.33, 0.33])
                
                # Try rule-based as fallback
                rule_emotion, rule_probs = self.rule_based.predict(results["transcription"])
                results["text_emotions"] = rule_probs
            else:
                text_emotions = self.text_classifier.predict_emotion(results["transcription"])
                sarcasm_indicators = self.text_classifier.detect_sarcasm(results["transcription"])
                
                # Format text emotions result
                results["text_emotions"] = {EMOTIONS[i]: float(text_emotions[i])
                                         for i in range(min(len(text_emotions), len(EMOTIONS)))}
            
            print(f"Text-based emotions: {results['text_emotions']}")
        except Exception as e:
            error_msg = f"Failed to analyze text emotions: {e}"
            print(error_msg)
            results["errors"].append(error_msg)
            
            # Use equal probabilities as fallback
            results["text_emotions"] = {emotion: 1.0/len(EMOTIONS) for emotion in EMOTIONS}
        
        # Step 3: Use rule-based audio classifier instead of the untrained model
        try:
            # Get predictions from rule-based classifier
            audio_probs = self.rule_based_audio.predict(audio_path)
            
            # Format acoustic emotions result
            results["acoustic_emotions"] = {EMOTIONS[i]: float(audio_probs[i])
                                          for i in range(min(len(audio_probs), len(EMOTIONS)))}
            
            print(f"Acoustic-based emotions: {results['acoustic_emotions']}")
        except Exception as e:
            error_msg = f"Failed to predict acoustic emotions: {e}"
            print(error_msg)
            results["errors"].append(error_msg)
            
            # Use equal probabilities as fallback
            results["acoustic_emotions"] = {emotion: 1.0/len(EMOTIONS) for emotion in EMOTIONS}
            audio_probs = np.ones(len(EMOTIONS)) / len(EMOTIONS)
        
        # Step 4: Improved fusion strategy - text-biased weighted average
        try:
            # Convert dictionaries to arrays
            text_array = np.array(list(results["text_emotions"].values()))
            audio_array = np.array(list(results["acoustic_emotions"].values()))
            
            # Calculate confidence scores
            text_confidence = 1.0 - np.std(text_array)  # Higher confidence if distribution is more certain
            audio_confidence = 1.0 - np.std(audio_array)
            
            # Bias toward text model since it's working better
            text_confidence *= 1.5  # Increase text confidence
            
            # Normalize confidences
            total_confidence = text_confidence + audio_confidence
            text_weight = text_confidence / total_confidence
            audio_weight = audio_confidence / total_confidence
            
            # Weighted average
            final_probs = (text_weight * text_array) + (audio_weight * audio_array)
            
            # Format final emotions
            results["final_emotions"] = {EMOTIONS[i]: float(final_probs[i])
                                       for i in range(len(EMOTIONS))}
            
            print(f"Fusion weights: Text={text_weight:.2f}, Audio={audio_weight:.2f}")
        except Exception as e:
            error_msg = f"Failed to fuse predictions: {e}"
            print(error_msg)
            results["errors"].append(error_msg)
            
            # Fallback to text-only predictions since they're more reliable
            results["final_emotions"] = results["text_emotions"]
        
        # Get predicted emotion
        try:
            emotion_values = list(results["final_emotions"].values())
            emotion_idx = np.argmax(emotion_values)
            predicted_emotion = EMOTIONS[emotion_idx]
            results["predicted_emotion"] = predicted_emotion
            
            # Check for sarcasm
            is_sarcastic = False
            if hasattr(sarcasm_indicators, "__len__") and len(sarcasm_indicators) > 0:
                if predicted_emotion in ["happy", "neutral"] and np.argmax(sarcasm_indicators) == 0:
                    is_sarcastic = True
                    results["predicted_emotion"] = "sarcastic"
            
            results["is_sarcastic"] = is_sarcastic
        except Exception as e:
            error_msg = f"Failed to determine final emotion: {e}"
            print(error_msg)
            results["errors"].append(error_msg)
            results["predicted_emotion"] = "neutral"  # Default fallback
        
        return results


# Part 12: Example on sample audio (with better error handling)
def demo_on_sample_audio(pipeline, audio_path):
    if not os.path.exists(audio_path):
        print(f"Error: Audio file not found at {audio_path}")
        return

    print(f"Analyzing audio file: {audio_path}")

    try:
        # Predict emotion from audio
        result = pipeline.predict(audio_path)

        # Print results
        print("\n===== EMOTION ANALYSIS RESULTS =====")
        print(f"Transcription: {result['transcription']}")
        print(f"\nPredicted Emotion: {result['predicted_emotion'].upper()}")
        print(f"Is Sarcastic: {'Yes' if result['is_sarcastic'] else 'No'}")

        print("\nText-based Emotions:")
        for emotion, score in result['text_emotions'].items():
            print(f"  {emotion}: {score:.4f}")

        print("\nAcoustic-based Emotions:")
        for emotion, score in result['acoustic_emotions'].items():
            print(f"  {emotion}: {score:.4f}")

        print("\nFinal Fusion Emotions:")
        for emotion, score in result['final_emotions'].items():
            print(f"  {emotion}: {score:.4f}")

        if 'errors' in result and result['errors']:
            print("\nErrors encountered:")
            for error in result['errors']:
                print(f"  - {error}")

        # Plot results for visualization
        try:
            emotions = list(result['text_emotions'].keys())
            text_scores = list(result['text_emotions'].values())
            acoustic_scores = list(result['acoustic_emotions'].values())
            final_scores = list(result['final_emotions'].values())

            plt.figure(figsize=(12, 6))

            x = np.arange(len(emotions))
            width = 0.25

            plt.bar(x - width, text_scores, width, label='Text')
            plt.bar(x, acoustic_scores, width, label='Acoustic')
            plt.bar(x + width, final_scores, width, label='Final')

            plt.xlabel('Emotions')
            plt.ylabel('Probability')
            plt.title('Emotion Prediction Results')
            plt.xticks(x, emotions, rotation=45)
            plt.legend()

            plt.tight_layout()
            plt.show()
        except Exception as e:
            print(f"Error creating visualization: {e}")

    except Exception as e:
        print(f"Error in demo: {e}")

# Part 13: Simplified dataset loading for RAVDESS dataset
def load_ravdess_sample():
    """
    Download a small sample from RAVDESS dataset for testing
    """
    # Create directory for sample data
    sample_dir = "./sample_data"
    os.makedirs(sample_dir, exist_ok=True)

    # Try to download a sample file
    try:
        import urllib.request

        # Example file from RAVDESS dataset (happy emotion)
        url = "https://zenodo.org/record/1188976/files/Audio_Speech_Actors_01-24/Actor_01/03-01-01-01-01-01-01.wav"
        sample_path = os.path.join(sample_dir, "sample_happy.wav")

        if not os.path.exists(sample_path):
            print(f"Downloading sample audio file from RAVDESS dataset...")
            urllib.request.urlretrieve(url, sample_path)
            print(f"Downloaded sample to {sample_path}")
        else:
            print(f"Sample file already exists at {sample_path}")

        return sample_path
    except Exception as e:
        print(f"Error downloading RAVDESS sample: {e}")
        return None

# Part 14: Simplified main function with proper error handling
def main():
    print("Starting Tone Classification System...")

    try:
        # Create the pipeline
        pipeline = EmotionRecognitionPipeline()

        # Try to load a sample file
        sample_audio_path = load_ravdess_sample()

        if sample_audio_path and os.path.exists(sample_audio_path):
            demo_on_sample_audio(pipeline, sample_audio_path)
        else:
            print("\nNo sample audio file available.")
            print("To use the system, provide an audio file path when calling the demo_on_sample_audio function:")
            print("\ndemo_on_sample_audio(pipeline, '/path/to/your/audio.wav')")

    except Exception as e:
        print(f"Error in main execution: {e}")
        print("\nTroubleshooting tips:")
        print("1. Check if your audio file exists and is in a supported format (WAV recommended)")
        print("2. Ensure you have sufficient memory for model loading")
        print("3. Try with a smaller model size in WhisperTranscriber (tiny instead of base)")
        print("4. Make sure you have stable internet connection for model downloading")

if __name__ == "__main__":
    main()


# Add this after the main() function definition but before the if __name__ == "__main__": line
def upload_and_analyze():
    from IPython.display import display
    import ipywidgets as widgets

    # Create upload widget
    upload_widget = widgets.FileUpload(
        accept='.wav, .mp3',
        multiple=False,
        description='Upload Audio File',
        button_style='primary'
    )
    display(upload_widget)

    # Create button to trigger analysis
    analyze_button = widgets.Button(description='Analyze Audio')
    display(analyze_button)

    # Create output area for results
    output = widgets.Output()
    display(output)

    def on_analyze_click(b):
        with output:
            output.clear_output()
            if not upload_widget.value:
                print("Please upload an audio file first.")
                return

            # Get the uploaded file
            file_data = next(iter(upload_widget.value.values()))
            file_name = next(iter(upload_widget.value.keys()))

            # Save to temp file
            temp_file = f"./temp_{file_name}"
            with open(temp_file, 'wb') as f:
                f.write(file_data['content'])

            print(f"Analyzing uploaded file: {file_name}")

            # Create pipeline and analyze
            pipeline = EmotionRecognitionPipeline()
            demo_on_sample_audio(pipeline, temp_file)

    analyze_button.on_click(on_analyze_click)

# Then modify the if __name__ == "__main__": section
if __name__ == "__main__":
    try:
        import ipywidgets
        # If ipywidgets is available, we're in a notebook
        print("Running in notebook mode - use the upload widget below:")
        upload_and_analyze()
    except ImportError:
        # Otherwise, run the standard main function
        main()


import os
import numpy as np
import torch
import matplotlib.pyplot as plt
import gradio as gr
from io import BytesIO

# Use the existing EmotionRecognitionPipeline class from your code

def analyze_audio(audio_path):
    """
    Analyze an audio file and return the emotion recognition results
    """
    if audio_path is None:
        return "Please provide an audio file.", None, None
    
    try:
        # Create the pipeline
        pipeline = EmotionRecognitionPipeline()
        
        # Predict emotion from audio
        result = pipeline.predict(audio_path)
        
        # Format the results for display
        transcription = result['transcription']
        predicted_emotion = result['predicted_emotion'].upper()
        is_sarcastic = 'Yes' if result['is_sarcastic'] else 'No'
        
        # Create text summary
        summary = f"Transcription: {transcription}\n\n"
        summary += f"Predicted Emotion: {predicted_emotion}\n"
        summary += f"Is Sarcastic: {is_sarcastic}\n\n"
        
        summary += "Text-based Emotions:\n"
        for emotion, score in result['text_emotions'].items():
            summary += f"  {emotion}: {score:.4f}\n"
        
        summary += "\nAcoustic-based Emotions:\n"
        for emotion, score in result['acoustic_emotions'].items():
            summary += f"  {emotion}: {score:.4f}\n"
        
        summary += "\nFinal Fusion Emotions:\n"
        for emotion, score in result['final_emotions'].items():
            summary += f"  {emotion}: {score:.4f}\n"
        
        if 'errors' in result and result['errors']:
            summary += "\nErrors encountered:\n"
            for error in result['errors']:
                summary += f"  - {error}\n"
        
        # Create visualization
        fig = create_emotion_plot(result)
        
        return summary, fig, result['predicted_emotion']
    except Exception as e:
        return f"Error analyzing audio: {str(e)}", None, "error"

def create_emotion_plot(result):
    """
    Create a visualization of the emotion recognition results
    """
    emotions = list(result['text_emotions'].keys())
    text_scores = list(result['text_emotions'].values())
    acoustic_scores = list(result['acoustic_emotions'].values())
    final_scores = list(result['final_emotions'].values())

    fig = plt.figure(figsize=(10, 6))

    x = np.arange(len(emotions))
    width = 0.25

    plt.bar(x - width, text_scores, width, label='Text')
    plt.bar(x, acoustic_scores, width, label='Acoustic')
    plt.bar(x + width, final_scores, width, label='Final')

    plt.xlabel('Emotions')
    plt.ylabel('Probability')
    plt.title('Emotion Recognition Results')
    plt.xticks(x, emotions, rotation=45)
    plt.legend()
    plt.tight_layout()
    
    return fig

# Create the Gradio interface with tabs for microphone and file upload
def create_gradio_interface():
    with gr.Blocks(title="Tone Classification System") as demo:
        gr.Markdown("# Tone Classification System")
        gr.Markdown("This system analyzes audio to detect emotions, including sarcasm and figures of speech.")
        
        with gr.Tabs():
            with gr.TabItem("Microphone Input"):
                with gr.Row():
                    with gr.Column():
                        audio_input = gr.Audio(
                            sources=["microphone"], 
                            type="filepath",
                            label="Record your voice"
                        )
                        analyze_btn = gr.Button("Analyze Recording", variant="primary")
                    
                    with gr.Column():
                        result_text = gr.Textbox(label="Analysis Results", lines=15)
                        emotion_plot = gr.Plot(label="Emotion Probabilities")
                        emotion_label = gr.Label(label="Detected Emotion")
                
                analyze_btn.click(
                    fn=analyze_audio,
                    inputs=audio_input,
                    outputs=[result_text, emotion_plot, emotion_label]
                )
            
            with gr.TabItem("File Upload"):
                with gr.Row():
                    with gr.Column():
                        file_input = gr.Audio(
                            sources=["upload"], 
                            type="filepath",
                            label="Upload audio file (.wav, .mp3)"
                        )
                        file_analyze_btn = gr.Button("Analyze File", variant="primary")
                    
                    with gr.Column():
                        file_result_text = gr.Textbox(label="Analysis Results", lines=15)
                        file_emotion_plot = gr.Plot(label="Emotion Probabilities")
                        file_emotion_label = gr.Label(label="Detected Emotion")
                
                file_analyze_btn.click(
                    fn=analyze_audio,
                    inputs=file_input,
                    outputs=[file_result_text, file_emotion_plot, file_emotion_label]
                )
        
        gr.Markdown("## How to Use")
        gr.Markdown("""
        1. **Microphone Input**: Record your voice and click 'Analyze Recording'
        2. **File Upload**: Upload an audio file (.wav or .mp3) and click 'Analyze File'
        
        The system will transcribe the speech, analyze emotions from both text and acoustic features,
        and display the results with a visualization of emotion probabilities.
        """)
        
        gr.Markdown("## About")
        gr.Markdown("""
        This tone classification system combines text and acoustic features to detect emotions in speech.
        It uses a multi-modal approach with:
        
        - Speech-to-text transcription
        - Text-based emotion analysis
        - Acoustic feature extraction
        - Fusion of both modalities for final prediction
        
        The system can detect: neutral, happy, sad, angry, fearful, disgust, surprised, and sarcastic tones.
        """)
    
    return demo

# Main function to launch the Gradio interface
def main():
    demo = create_gradio_interface()
    demo.launch()

if __name__ == "__main__":
    main()