File size: 31,777 Bytes
313d9db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
import os
import json
import shutil
import gradio as gr
import tempfile
from datetime import datetime
from typing import List, Dict, Any, Optional
from pytube import YouTube
from pathlib import Path
import re

# --- Agent Imports & Safe Fallbacks ---
try:
    from alz_companion.agent import (
        bootstrap_vectorstore, make_rag_chain, answer_query, synthesize_tts,
        transcribe_audio, detect_tags_from_query, describe_image, build_or_load_vectorstore,
        _default_embeddings
    )
    from alz_companion.prompts import BEHAVIOUR_TAGS, EMOTION_STYLES
    from langchain.schema import Document
    from langchain_community.vectorstores import FAISS
    AGENT_OK = True
except Exception as e:
    AGENT_OK = False
    def bootstrap_vectorstore(sample_paths=None, index_path="data/"): return object()
    def build_or_load_vectorstore(docs, index_path, is_personal=False): return object()
    def make_rag_chain(vs_general, vs_personal, **kwargs): return lambda q, **k: {"answer": f"(Demo) You asked: {q}", "sources": []}
    def answer_query(chain, q, **kwargs): return chain(q, **kwargs)
    def synthesize_tts(text: str, lang: str = "en"): return None
    def transcribe_audio(filepath: str, lang: str = "en"): return "This is a transcribed message."
    def detect_tags_from_query(*args, **kwargs): return {"detected_behavior": "None", "detected_emotion": "None"}
    def describe_image(image_path: str): return "This is a description of an image."
    def _default_embeddings(): return None
    class Document:
        def __init__(self, page_content, metadata): self.page_content, self.metadata = page_content, metadata
    class FAISS:
        def __init__(self): self.docstore = type('obj', (object,), {'_dict': {}})()
    BEHAVIOUR_TAGS, EMOTION_STYLES = {"None": []}, {"None": {}}
    print(f"WARNING: Could not import from alz_companion ({e}). Running in UI-only demo mode.")

# --- Centralized Configuration ---
CONFIG = {
    "themes": ["All", "The Father", "Still Alice", "Away from Her", "Alive Inside", "General Caregiving"],
    "roles": ["patient", "caregiver"],
    "behavior_tags": ["None"] + list(BEHAVIOUR_TAGS.keys()),
    "emotion_tags": ["None"] + list(EMOTION_STYLES.keys()),
    "topic_tags": ["None", "caregiving_advice", "medical_fact", "personal_story", "research_update", "treatment_option:home_safety", "treatment_option:long_term_care", "treatment_option:music_therapy", "treatment_option:reassurance", "treatment_option:routine_structuring", "treatment_option:validation_therapy"],
    "context_tags": ["None", "disease_stage_mild", "disease_stage_moderate", "disease_stage_advanced", "disease_stage_unspecified", "interaction_mode_one_to_one", "interaction_mode_small_group", "interaction_mode_group_activity", "relationship_family", "relationship_spouse", "relationship_staff_or_caregiver", "relationship_unspecified", "setting_home_or_community", "setting_care_home", "setting_clinic_or_hospital"],
    "languages": {"English": "en", "Chinese": "zh", "Cantonese": "zh-yue", "Korean": "ko", "Japanese": "ja", "Malay": "ms", "French": "fr", "Spanish": "es", "Hindi": "hi", "Arabic": "ar"},
    "tones": ["warm", "empathetic", "caring", "reassuring", "calm", "optimistic", "motivating", "neutral", "formal", "humorous"]
}

# --- File Management & Vector Store Logic ---
def _storage_root() -> Path:
    for p in [Path(os.getenv("SPACE_STORAGE", "")), Path("/data"), Path.home() / ".cache" / "alz_companion"]:
        if not p: continue
        try:
            p.mkdir(parents=True, exist_ok=True)
            (p / ".write_test").write_text("ok")
            (p / ".write_test").unlink(missing_ok=True)
            return p
        except Exception: continue
    tmp = Path(tempfile.gettempdir()) / "alz_companion"
    tmp.mkdir(parents=True, exist_ok=True)
    return tmp

STORAGE_ROOT = _storage_root()
INDEX_BASE = STORAGE_ROOT / "index"
PERSONAL_DATA_BASE = STORAGE_ROOT / "personal"
UPLOADS_BASE = INDEX_BASE / "uploads"
PERSONAL_INDEX_PATH = str(PERSONAL_DATA_BASE / "personal_faiss_index")
NLU_EXAMPLES_INDEX_PATH = str(INDEX_BASE / "nlu_examples_faiss_index")

THEME_PATHS = {t: str(INDEX_BASE / f"faiss_index_{t.replace(' ', '').lower()}") for t in CONFIG["themes"]}

os.makedirs(UPLOADS_BASE, exist_ok=True)
os.makedirs(PERSONAL_DATA_BASE, exist_ok=True)
for p in THEME_PATHS.values(): os.makedirs(p, exist_ok=True)

vectorstores = {}
personal_vectorstore = None
nlu_vectorstore = None
test_fixtures = []

try:
    personal_vectorstore = build_or_load_vectorstore([], PERSONAL_INDEX_PATH, is_personal=True)
except Exception:
    personal_vectorstore = None

def bootstrap_nlu_vectorstore(example_file: str, index_path: str) -> FAISS:
    if not os.path.exists(example_file):
        print(f"WARNING: NLU example file not found at {example_file}. NLU will be less accurate.")
        return build_or_load_vectorstore([], index_path)
    docs = []
    with open(example_file, "r", encoding="utf-8") as f:
        for line in f:
            try:
                data = json.loads(line)
                doc = Document(page_content=data["query"], metadata=data)
                docs.append(doc)
            except (json.JSONDecodeError, KeyError):
                continue
    print(f"Found and loaded {len(docs)} NLU training examples.")
    if os.path.exists(index_path):
        shutil.rmtree(index_path)
    return build_or_load_vectorstore(docs, index_path)

def canonical_theme(tk: str) -> str: return tk if tk in CONFIG["themes"] else "All"
def theme_upload_dir(theme: str) -> str:
    p = UPLOADS_BASE / f"theme_{canonical_theme(theme).replace(' ', '').lower()}"
    p.mkdir(exist_ok=True)
    return str(p)
def load_manifest(theme: str) -> Dict[str, Any]:
    p = os.path.join(theme_upload_dir(theme), "manifest.json")
    if os.path.exists(p):
        try:
            with open(p, "r", encoding="utf-8") as f: return json.load(f)
        except Exception: pass
    return {"files": {}}
def save_manifest(theme: str, man: Dict[str, Any]):
    with open(os.path.join(theme_upload_dir(theme), "manifest.json"), "w", encoding="utf-8") as f: json.dump(man, f, indent=2)
def list_theme_files(theme: str) -> List[tuple[str, bool]]:
    man = load_manifest(theme)
    base = theme_upload_dir(theme)
    found = [(n, bool(e)) for n, e in man.get("files", {}).items() if os.path.exists(os.path.join(base, n))]
    existing = {n for n, e in found}
    for name in sorted(os.listdir(base)):
        if name not in existing and os.path.isfile(os.path.join(base, name)): found.append((name, False))
    man["files"] = dict(found)
    save_manifest(theme, man)
    return found
def copy_into_theme(theme: str, src_path: str) -> str:
    fname = os.path.basename(src_path)
    dest = os.path.join(theme_upload_dir(theme), fname)
    shutil.copy2(src_path, dest)
    return dest
def seed_files_into_theme(theme: str):
    SEED_FILES = [("sample_data/caregiving_tips.txt", True), ("sample_data/the_father_segments_enriched_harmonized_plus.jsonl", True), ("sample_data/still_alice_enriched_harmonized_plus.jsonl", True), ("sample_data/away_from_her_enriched_harmonized_plus.jsonl", True), ("sample_data/alive_inside_enriched_harmonized.jsonl", True)]
    man, changed = load_manifest(theme), False
    for path, enable in SEED_FILES:
        if not os.path.exists(path): continue
        fname = os.path.basename(path)
        if not os.path.exists(os.path.join(theme_upload_dir(theme), fname)):
            copy_into_theme(theme, path)
            man["files"][fname] = bool(enable)
            changed = True
    if changed: save_manifest(theme, man)
def ensure_index(theme='All'):
    theme = canonical_theme(theme)
    if theme in vectorstores: return vectorstores[theme]
    upload_dir = theme_upload_dir(theme)
    enabled_files = [os.path.join(upload_dir, n) for n, enabled in list_theme_files(theme) if enabled]
    index_path = THEME_PATHS.get(theme)
    vectorstores[theme] = bootstrap_vectorstore(sample_paths=enabled_files, index_path=index_path)
    return vectorstores[theme]

# --- Gradio Callbacks ---
def collect_settings(*args):
    keys = ["role", "patient_name", "caregiver_name", "tone", "language", "tts_lang", "temperature", "behaviour_tag", "emotion_tag", "topic_tag", "active_theme", "tts_on", "debug_mode"]
    return dict(zip(keys, args))

def parse_and_tag_entries(text_content: str, source: str, settings: dict = None) -> List[Document]:
    docs_to_add = []
    for entry in re.split(r'\n(?:---|--|-|-\*-|-\.-)\n', text_content):
        if not entry.strip(): continue
        lines = entry.strip().split('\n')
        title_line = lines[0].split(':', 1)
        title = title_line[1].strip() if len(title_line) > 1 and "title:" in lines[0].lower() else "Untitled Text Entry"
        content_part = "\n".join(lines[1:])
        content = content_part.split(':', 1)[1].strip() if "content:" in content_part.lower() else content_part.strip()
        full_content = f"Title: {title}\n\nContent: {content}"
        detected_tags = detect_tags_from_query(
            content, nlu_vectorstore=nlu_vectorstore, behavior_options=CONFIG["behavior_tags"],
            emotion_options=CONFIG["emotion_tags"], topic_options=CONFIG["topic_tags"],
            context_options=CONFIG["context_tags"], settings=settings)
        metadata = {"source": source, "title": title}
        if detected_tags.get("detected_behaviors"): metadata["behaviors"] = [b.lower() for b in detected_tags["detected_behaviors"]]
        if detected_tags.get("detected_emotion") != "None": metadata["emotion"] = detected_tags.get("detected_emotion").lower()
        if detected_tags.get("detected_topic") != "None": metadata["topic_tags"] = [detected_tags.get("detected_topic").lower()]
        if detected_tags.get("detected_contexts"): metadata["context_tags"] = [c.lower() for c in detected_tags["detected_contexts"]]
        docs_to_add.append(Document(page_content=full_content, metadata=metadata))
    return docs_to_add

def handle_add_knowledge(title, text_input, file_input, image_input, yt_url, settings):
    global personal_vectorstore
    docs_to_add = []
    source, content = "Unknown", ""
    if text_input and text_input.strip():
        source, content = "Text Input", f"Title: {title or 'Untitled'}\n\nContent: {text_input}"
    elif file_input:
        source = os.path.basename(file_input.name)
        if file_input.name.lower().endswith('.txt'):
            with open(file_input.name, 'r', encoding='utf-8') as f: content = f.read()
        else:
            transcribed = transcribe_audio(file_input.name)
            content = f"Title: {title or 'Audio/Video Note'}\n\nContent: {transcribed}"
    elif image_input:
        source, description = "Image Input", describe_image(image_input)
        content = f"Title: {title or 'Image Note'}\n\nContent: {description}"
    elif yt_url and ("youtube.com" in yt_url or "youtu.be" in yt_url):
        try:
            yt = YouTube(yt_url)
            with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as temp_audio_file:
                yt.streams.get_audio_only().download(filename=temp_audio_file.name)
                transcribed = transcribe_audio(temp_audio_file.name)
                os.remove(temp_audio_file.name)
            source, content = f"YouTube: {yt.title}", f"Title: {title or yt.title}\n\nContent: {transcribed}"
        except Exception as e:
            return f"Error processing YouTube link: {e}"
    else:
        return "Please provide content to add."
    if content:
        docs_to_add = parse_and_tag_entries(content, source, settings=settings)
    if not docs_to_add: return "No processable content found to add."
    if personal_vectorstore is None:
        personal_vectorstore = build_or_load_vectorstore(docs_to_add, PERSONAL_INDEX_PATH, is_personal=True)
    else:
        personal_vectorstore.add_documents(docs_to_add)
    personal_vectorstore.save_local(PERSONAL_INDEX_PATH)
    return f"Successfully added {len(docs_to_add)} new memory/memories."

def chat_fn(user_text, audio_file, settings, chat_history):
    global personal_vectorstore
    if chat_history:
        chat_history.reverse()
    question = (user_text or "").strip()
    if audio_file and not question:
        try:
            question = transcribe_audio(audio_file, lang=CONFIG["languages"].get(settings.get("tts_lang", "English"), "en"))
        except Exception as e:
            err_msg = f"Audio Error: {e}" if settings.get("debug_mode") else "Sorry, I couldn't understand the audio."
            chat_history.append({"role": "assistant", "content": err_msg})
            return "", None, chat_history[::-1]
    if not question:
        if chat_history:
            chat_history.reverse()
        return "", None, chat_history
    chat_history.append({"role": "user", "content": question})
    final_tags = { "scenario_tag": None, "emotion_tag": None, "topic_tag": None, "context_tags": [] }
    manual_behavior = settings.get("behaviour_tag", "None")
    manual_emotion = settings.get("emotion_tag", "None")
    manual_topic = settings.get("topic_tag", "None")
    if all(m == "None" for m in [manual_behavior, manual_emotion, manual_topic]):
        detected_tags = detect_tags_from_query(
            question, nlu_vectorstore=nlu_vectorstore, behavior_options=CONFIG["behavior_tags"],
            emotion_options=CONFIG["emotion_tags"], topic_options=CONFIG["topic_tags"],
            context_options=CONFIG["context_tags"], settings=settings)
        behaviors = detected_tags.get("detected_behaviors")
        if behaviors:
            final_tags["scenario_tag"] = behaviors[0]
        else:
            final_tags["scenario_tag"] = None
        final_tags["emotion_tag"] = detected_tags.get("detected_emotion")
        final_tags["topic_tag"] = detected_tags.get("detected_topic")
        final_tags["context_tags"] = detected_tags.get("detected_contexts", [])
        detected_parts = [f"{k.split('_')[1]}=`{v}`" for k, v in final_tags.items() if v and v != "None"]
        if detected_parts:
            chat_history.append({"role": "assistant", "content": f"*(Auto-detected context: {', '.join(detected_parts)})*"})
    else:
        final_tags["scenario_tag"] = manual_behavior if manual_behavior != "None" else None
        final_tags["emotion_tag"] = manual_emotion if manual_emotion != "None" else None
        final_tags["topic_tag"] = manual_topic if manual_topic != "None" else None
    vs_general = ensure_index(settings.get("active_theme", "All"))
    if personal_vectorstore is None:
        personal_vectorstore = build_or_load_vectorstore([], PERSONAL_INDEX_PATH, is_personal=True)
    rag_settings = {k: settings.get(k) for k in ["role", "temperature", "language", "patient_name", "caregiver_name", "tone"]}
    chain = make_rag_chain(vs_general, personal_vectorstore, **rag_settings)
    response = answer_query(chain, question, chat_history=chat_history[:-1], **final_tags)
    answer = response.get("answer", "[No answer found]")
    chat_history.append({"role": "assistant", "content": answer})
    if response.get("sources"):
        chat_history.append({"role": "assistant", "content": f"*(Sources used: {', '.join(response['sources'])})*"})
    audio_out = None
    if settings.get("tts_on") and answer:
        audio_out = synthesize_tts(answer, lang=CONFIG["languages"].get(settings.get("tts_lang"), "en"))
    return "", gr.update(value=audio_out, visible=bool(audio_out)), chat_history[::-1]

def save_chat_to_memory(chat_history):
    global personal_vectorstore
    if chat_history:
        chat_history.reverse()
    if not chat_history: return "Nothing to save."
    formatted_chat = [f"{m['role'].title()}: {m['content'].strip()}" for m in chat_history if not m['content'].strip().startswith("*(")]
    if not formatted_chat: return "No conversation to save."
    timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    title = f"Conversation from {timestamp}"
    full_content = f"Title: {title}\n\nContent:\n" + "\n".join(formatted_chat)
    doc = Document(page_content=full_content, metadata={"source": "Saved Chat", "title": title})
    if personal_vectorstore is None:
        personal_vectorstore = build_or_load_vectorstore([doc], PERSONAL_INDEX_PATH, is_personal=True)
    else:
        personal_vectorstore.add_documents([doc])
    personal_vectorstore.save_local(PERSONAL_INDEX_PATH)
    return f"Conversation from {timestamp} saved."
def list_personal_memories():
    global personal_vectorstore
    if personal_vectorstore is None or not hasattr(personal_vectorstore.docstore, '_dict') or not personal_vectorstore.docstore._dict:
        return gr.update(value=[["No memories", "", ""]]), gr.update(choices=[], value=None)
    docs = list(personal_vectorstore.docstore._dict.values())
    return gr.update(value=[[d.metadata.get('title', '...'), d.metadata.get('source', '...'), d.page_content] for d in docs]), gr.update(choices=[d.page_content for d in docs])
def delete_personal_memory(memory_to_delete):
    global personal_vectorstore
    if personal_vectorstore is None or not memory_to_delete: return "No memory selected."
    all_docs = list(personal_vectorstore.docstore._dict.values())
    docs_to_keep = [d for d in all_docs if d.page_content != memory_to_delete]
    if len(all_docs) == len(docs_to_keep): return "Error: Could not find memory."
    if not docs_to_keep:
        if os.path.isdir(PERSONAL_INDEX_PATH): shutil.rmtree(PERSONAL_INDEX_PATH)
        personal_vectorstore = build_or_load_vectorstore([], PERSONAL_INDEX_PATH, is_personal=True)
    else:
        new_vs = FAISS.from_documents(docs_to_keep, _default_embeddings())
        new_vs.save_local(PERSONAL_INDEX_PATH)
        personal_vectorstore = new_vs
    return "Successfully deleted memory."
def upload_knowledge(files, theme):
    for f in files: copy_into_theme(theme, f.name)
    if theme in vectorstores: del vectorstores[theme]
    return f"Uploaded {len(files)} file(s)."
def save_file_selection(theme, enabled):
    man = load_manifest(theme)
    for fname in man['files']: man['files'][fname] = fname in enabled
    save_manifest(theme, man)
    if theme in vectorstores: del vectorstores[theme]
    return f"Settings saved for theme '{theme}'."
def refresh_file_list_ui(theme):
    files = list_theme_files(theme)
    return gr.update(choices=[f for f, _ in files], value=[f for f, en in files if en]), f"Found {len(files)} file(s)."
def auto_setup_on_load(theme):
    if not os.listdir(theme_upload_dir(theme)): seed_files_into_theme(theme)
    settings = collect_settings("caregiver", "", "", "warm", "English", "English", 0.7, "None", "None", "None", "All", True, False)
    files_ui, status = refresh_file_list_ui(theme)
    return settings, files_ui, status
def run_nlu_test(test_title: str):
    if not test_title or not test_fixtures: return "Please select a test case.", None
    fixture = next((f for f in test_fixtures if f["title"] == test_title), None)
    if not fixture: return f"Error: Could not find test case '{test_title}'.", None
    actual_raw = detect_tags_from_query(
        fixture["turns"][0]["text"], nlu_vectorstore, CONFIG["behavior_tags"], CONFIG["emotion_tags"], CONFIG["topic_tags"], CONFIG["context_tags"]
    )
    actual = {"emotion": [actual_raw.get("detected_emotion")], "behaviors": actual_raw.get("detected_behaviors", []), "topic_tags": [actual_raw.get("detected_topic")], "context_tags": actual_raw.get("detected_contexts", [])}
    pass_count, total_count, data = 0, 0, []
    expected = fixture["expected"]
    all_keys = set(expected.keys()) | set(actual.keys())
    for key in sorted(list(all_keys)):
        expected_set = set(expected.get(key, []))
        if not expected_set: continue
        total_count += 1
        actual_set = set(a for a in actual.get(key, []) if a and a != "None")
        is_pass = len(expected_set.intersection(actual_set)) > 0
        if is_pass: pass_count += 1
        data.append([key, ", ".join(sorted(list(expected_set))), ", ".join(sorted(list(actual_set))) or "None", "βœ… Pass" if is_pass else "❌ Fail"])
    return f"## Test Result: {pass_count} / {total_count} Passed", data
def load_test_fixtures():
    global test_fixtures
    test_fixtures = []
    fixtures_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "conversation_test_fixtures.jsonl")
    if not os.path.exists(fixtures_path): return gr.update(choices=[])
    with open(fixtures_path, "r", encoding="utf-8") as f:
        for line in f: test_fixtures.append(json.loads(line))
    return gr.update(choices=[f["title"] for f in test_fixtures])
def run_all_nlu_tests():
    if not test_fixtures: load_test_fixtures()
    if not test_fixtures: return "## No test fixtures found.", []
    passed_tests, all_results = 0, []
    for fixture in test_fixtures:
        user_query = fixture["turns"][0]["text"]
        expected_results = fixture["expected"]
        actual_results_raw = detect_tags_from_query(user_query, nlu_vectorstore, CONFIG["behavior_tags"], CONFIG["emotion_tags"], CONFIG["topic_tags"], CONFIG["context_tags"])
        actual_results = {"emotion": [actual_results_raw.get("detected_emotion")], "behaviors": actual_results_raw.get("detected_behaviors", []), "topic_tags": [actual_results_raw.get("detected_topic")], "context_tags": actual_results_raw.get("detected_contexts", [])}
        pass_count, total_count = 0, 0
        for key in sorted(list(expected_results.keys())):
            expected_set = set(expected_results.get(key, []))
            if not expected_set: continue
            total_count += 1
            actual_set = set(a for a in actual_results.get(key, []) if a and a != "None")
            if len(expected_set.intersection(actual_set)) > 0: pass_count += 1
        overall_result = "❌ Fail"
        if total_count > 0:
            pass_ratio = pass_count / total_count
            if pass_ratio == 1.0: passed_tests += 1; overall_result = "βœ… Pass"
            elif pass_ratio > 0.65: overall_result = "⚠️ Partial"
        all_results.append([fixture["title"], overall_result, f"{pass_count} / {total_count}"])
    pass_rate = (passed_tests / len(test_fixtures)) * 100 if test_fixtures else 0
    return f"## Batch Summary: {passed_tests} / {len(test_fixtures)} Tests Passed ({pass_rate:.1f}%)", all_results
def test_save_file():
    try:
        path = PERSONAL_DATA_BASE / "persistence_test.txt"
        path.write_text(f"File saved at: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
        return f"βœ… Success! Wrote test file to: {path}"
    except Exception as e: return f"❌ Error! Failed to write file: {e}"
def check_test_file():
    path = PERSONAL_DATA_BASE / "persistence_test.txt"
    if path.exists(): return f"βœ… Success! Found test file. Contents: '{path.read_text()}'"
    return f"❌ Failure. Test file not found at: {path}"

# --- UI Definition ---
CSS = """
.gradio-container { font-size: 14px; } 
#chatbot { min-height: 400px; } 
#audio_in audio, #audio_out audio { max-height: 40px; } 
#audio_in .waveform, #audio_out .waveform { display: none !important; }
#audio_in, #audio_out { min-height: 0px !important; }
"""
with gr.Blocks(theme=gr.themes.Soft(), css=CSS) as demo:
    settings_state = gr.State({})
    with gr.Tab("Chat"):
        with gr.Row():
            user_text = gr.Textbox(show_label=False, placeholder="Type your message here...", scale=7)
            submit_btn = gr.Button("Send", variant="primary", scale=1)
        with gr.Row():
            audio_in = gr.Audio(sources=["microphone"], type="filepath", label="Voice Input", elem_id="audio_in")
            audio_out = gr.Audio(label="Response Audio", autoplay=True, visible=True, elem_id="audio_out")
        
        chatbot = gr.Chatbot(elem_id="chatbot", label="Conversation", type="messages")
        chat_status = gr.Markdown()
        with gr.Row():
            clear_btn = gr.Button("Clear")
            save_btn = gr.Button("Save to Memory")

    with gr.Tab("Personalize"):
        with gr.Accordion("Add to Personal Knowledge Base", open=True):
            personal_title = gr.Textbox(label="Title")
            personal_text = gr.Textbox(lines=5, label="Text Content")
            with gr.Row():
                personal_file = gr.File(label="Upload Audio/Video/Text File")
                personal_image = gr.Image(type="filepath", label="Upload Image")
            personal_yt_url = gr.Textbox(label="Or, provide a YouTube URL")
            personal_add_btn = gr.Button("Add Knowledge", variant="primary")
            personal_status = gr.Markdown()
        gr.Markdown("### **Manage Personal Knowledge**")
        with gr.Accordion("View/Hide Details", open=False):
            personal_memory_display = gr.DataFrame(headers=["Title", "Source", "Content"], label="Saved Memories", row_count=(5, "dynamic"))
            personal_refresh_btn = gr.Button("Refresh Memories")
            personal_delete_selector = gr.Dropdown(label="Select memory to delete", scale=3, interactive=True)
            personal_delete_btn = gr.Button("Delete Selected", variant="stop", scale=1)
            personal_delete_status = gr.Markdown()

    with gr.Tab("Testing"):
        gr.Markdown("## NLU Context Detection Tests")
        batch_summary_md = gr.Markdown("### Batch Test Summary: Not yet run.")
        with gr.Row():
            test_case_dropdown = gr.Dropdown(label="Select Single Test Case", scale=2)
            run_test_btn = gr.Button("Run Single Test", scale=1)
            run_all_btn = gr.Button("Run All Tests", variant="primary", scale=1)
        test_status_md = gr.Markdown("### Test Results")
        test_results_df = gr.DataFrame(label="Test Comparison", headers=["Test Case Title", "Result", "Categories Passed"], interactive=False)

    with gr.Tab("Settings"):
        with gr.Group():
            gr.Markdown("## Conversation & Persona Settings")
            with gr.Row():
                role = gr.Radio(CONFIG["roles"], value="patient", label="Your Role")
                patient_name = gr.Textbox(label="Patient's Name")
                caregiver_name = gr.Textbox(label="Caregiver's Name")
            with gr.Row():
                temperature = gr.Slider(0.0, 1.2, value=0.7, step=0.1, label="Creativity")
                tone = gr.Dropdown(CONFIG["tones"], value="warm", label="Response Tone")
            with gr.Row():
                behaviour_tag = gr.Dropdown(CONFIG["behavior_tags"], value="None", label="Behaviour Filter (Manual)")
                emotion_tag = gr.Dropdown(CONFIG["emotion_tags"], value="None", label="Emotion Filter (Manual)")
                topic_tag = gr.Dropdown(CONFIG["topic_tags"], value="None", label="Topic Tag Filter (Manual)")
        with gr.Accordion("Language, Voice & Debugging", open=False):
            language = gr.Dropdown(list(CONFIG["languages"].keys()), value="English", label="Response Language")
            tts_lang = gr.Dropdown(list(CONFIG["languages"].keys()), value="English", label="Voice Language")
            tts_on = gr.Checkbox(True, label="Enable Voice Response")
            debug_mode = gr.Checkbox(False, label="Show Debug Info")
        gr.Markdown("--- \n ## General Knowledge Base Management")
        with gr.Row():
            with gr.Column(scale=1):
                files_in = gr.File(file_count="multiple", file_types=[".jsonl", ".txt"], label="Upload Knowledge Files")
                upload_btn = gr.Button("Upload to Theme")
                seed_btn = gr.Button("Import Sample Data")
                mgmt_status = gr.Markdown()
            with gr.Column(scale=2):
                active_theme = gr.Radio(CONFIG["themes"], value="All", label="Active Knowledge Theme")
                files_box = gr.CheckboxGroup(choices=[], label="Enable Files for Selected Theme")
                with gr.Row():
                    save_files_btn = gr.Button("Save Selection", variant="primary")
                    refresh_btn = gr.Button("Refresh List")
        with gr.Accordion("Persistence Test", open=False):
            test_save_btn = gr.Button("1. Run Persistence Test (Save File)")
            check_save_btn = gr.Button("3. Check for Test File")
            test_status = gr.Markdown()

    # --- Event Wiring ---
    all_settings = [role, patient_name, caregiver_name, tone, language, tts_lang, temperature, behaviour_tag, emotion_tag, topic_tag, active_theme, tts_on, debug_mode]
    for c in all_settings: c.change(fn=collect_settings, inputs=all_settings, outputs=settings_state)
    submit_btn.click(fn=chat_fn, inputs=[user_text, audio_in, settings_state, chatbot], outputs=[user_text, audio_out, chatbot])
    save_btn.click(fn=save_chat_to_memory, inputs=[chatbot], outputs=[chat_status])
    clear_btn.click(lambda: (None, None, [], None, "", ""), outputs=[user_text, audio_out, chatbot, audio_in, user_text, chat_status])
    personal_add_btn.click(fn=handle_add_knowledge, inputs=[personal_title, personal_text, personal_file, personal_image, personal_yt_url, settings_state], outputs=[personal_status]).then(lambda: (None, None, None, None, None), outputs=[personal_title, personal_text, personal_file, personal_image, personal_yt_url])
    personal_refresh_btn.click(fn=list_personal_memories, inputs=None, outputs=[personal_memory_display, personal_delete_selector])
    personal_delete_btn.click(fn=delete_personal_memory, inputs=[personal_delete_selector], outputs=[personal_delete_status]).then(fn=list_personal_memories, inputs=None, outputs=[personal_memory_display, personal_delete_selector])
    upload_btn.click(upload_knowledge, inputs=[files_in, active_theme], outputs=[mgmt_status]).then(refresh_file_list_ui, inputs=[active_theme], outputs=[files_box, mgmt_status])
    save_files_btn.click(save_file_selection, inputs=[active_theme, files_box], outputs=[mgmt_status])
    seed_btn.click(seed_files_into_theme, inputs=[active_theme]).then(refresh_file_list_ui, inputs=[active_theme], outputs=[files_box, mgmt_status])
    refresh_btn.click(refresh_file_list_ui, inputs=[active_theme], outputs=[files_box, mgmt_status])
    active_theme.change(refresh_file_list_ui, inputs=[active_theme], outputs=[files_box, mgmt_status])
    demo.load(auto_setup_on_load, inputs=[active_theme], outputs=[settings_state, files_box, mgmt_status])
    demo.load(load_test_fixtures, outputs=[test_case_dropdown])
    run_test_btn.click(fn=run_nlu_test, inputs=[test_case_dropdown], outputs=[test_status_md, test_results_df])
    run_all_btn.click(fn=run_all_nlu_tests, outputs=[batch_summary_md, test_results_df])
    test_save_btn.click(fn=test_save_file, inputs=None, outputs=[test_status])
    check_save_btn.click(fn=check_test_file, inputs=None, outputs=[test_status])

# --- Startup Logic ---
def pre_load_indexes():
    global personal_vectorstore, nlu_vectorstore
    print("Pre-loading all indexes at startup...")
    print("  - Loading NLU examples index...")
    nlu_vectorstore = bootstrap_nlu_vectorstore("nlu_training_examples.jsonl", NLU_EXAMPLES_INDEX_PATH)
    print(f"    ...NLU index loaded.")
    for theme in CONFIG["themes"]:
        print(f"  - Loading general index for theme: '{theme}'")
        try:
            ensure_index(theme)
            print(f"    ...'{theme}' theme loaded.")
        except Exception as e:
            print(f"    ...Error loading theme '{theme}': {e}")
    print("  - Loading personal knowledge index...")
    try:
        personal_vectorstore = build_or_load_vectorstore([], PERSONAL_INDEX_PATH, is_personal=True)
        print("    ...Personal knowledge loaded.")
    except Exception as e:
        print(f"    ...Error loading personal knowledge: {e}")
    print("All indexes loaded. Application is ready.")

if __name__ == "__main__":
    seed_files_into_theme('All')
    pre_load_indexes()
    demo.queue().launch(debug=True)