Spaces:
Running
Running
File size: 31,777 Bytes
313d9db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 |
import os
import json
import shutil
import gradio as gr
import tempfile
from datetime import datetime
from typing import List, Dict, Any, Optional
from pytube import YouTube
from pathlib import Path
import re
# --- Agent Imports & Safe Fallbacks ---
try:
from alz_companion.agent import (
bootstrap_vectorstore, make_rag_chain, answer_query, synthesize_tts,
transcribe_audio, detect_tags_from_query, describe_image, build_or_load_vectorstore,
_default_embeddings
)
from alz_companion.prompts import BEHAVIOUR_TAGS, EMOTION_STYLES
from langchain.schema import Document
from langchain_community.vectorstores import FAISS
AGENT_OK = True
except Exception as e:
AGENT_OK = False
def bootstrap_vectorstore(sample_paths=None, index_path="data/"): return object()
def build_or_load_vectorstore(docs, index_path, is_personal=False): return object()
def make_rag_chain(vs_general, vs_personal, **kwargs): return lambda q, **k: {"answer": f"(Demo) You asked: {q}", "sources": []}
def answer_query(chain, q, **kwargs): return chain(q, **kwargs)
def synthesize_tts(text: str, lang: str = "en"): return None
def transcribe_audio(filepath: str, lang: str = "en"): return "This is a transcribed message."
def detect_tags_from_query(*args, **kwargs): return {"detected_behavior": "None", "detected_emotion": "None"}
def describe_image(image_path: str): return "This is a description of an image."
def _default_embeddings(): return None
class Document:
def __init__(self, page_content, metadata): self.page_content, self.metadata = page_content, metadata
class FAISS:
def __init__(self): self.docstore = type('obj', (object,), {'_dict': {}})()
BEHAVIOUR_TAGS, EMOTION_STYLES = {"None": []}, {"None": {}}
print(f"WARNING: Could not import from alz_companion ({e}). Running in UI-only demo mode.")
# --- Centralized Configuration ---
CONFIG = {
"themes": ["All", "The Father", "Still Alice", "Away from Her", "Alive Inside", "General Caregiving"],
"roles": ["patient", "caregiver"],
"behavior_tags": ["None"] + list(BEHAVIOUR_TAGS.keys()),
"emotion_tags": ["None"] + list(EMOTION_STYLES.keys()),
"topic_tags": ["None", "caregiving_advice", "medical_fact", "personal_story", "research_update", "treatment_option:home_safety", "treatment_option:long_term_care", "treatment_option:music_therapy", "treatment_option:reassurance", "treatment_option:routine_structuring", "treatment_option:validation_therapy"],
"context_tags": ["None", "disease_stage_mild", "disease_stage_moderate", "disease_stage_advanced", "disease_stage_unspecified", "interaction_mode_one_to_one", "interaction_mode_small_group", "interaction_mode_group_activity", "relationship_family", "relationship_spouse", "relationship_staff_or_caregiver", "relationship_unspecified", "setting_home_or_community", "setting_care_home", "setting_clinic_or_hospital"],
"languages": {"English": "en", "Chinese": "zh", "Cantonese": "zh-yue", "Korean": "ko", "Japanese": "ja", "Malay": "ms", "French": "fr", "Spanish": "es", "Hindi": "hi", "Arabic": "ar"},
"tones": ["warm", "empathetic", "caring", "reassuring", "calm", "optimistic", "motivating", "neutral", "formal", "humorous"]
}
# --- File Management & Vector Store Logic ---
def _storage_root() -> Path:
for p in [Path(os.getenv("SPACE_STORAGE", "")), Path("/data"), Path.home() / ".cache" / "alz_companion"]:
if not p: continue
try:
p.mkdir(parents=True, exist_ok=True)
(p / ".write_test").write_text("ok")
(p / ".write_test").unlink(missing_ok=True)
return p
except Exception: continue
tmp = Path(tempfile.gettempdir()) / "alz_companion"
tmp.mkdir(parents=True, exist_ok=True)
return tmp
STORAGE_ROOT = _storage_root()
INDEX_BASE = STORAGE_ROOT / "index"
PERSONAL_DATA_BASE = STORAGE_ROOT / "personal"
UPLOADS_BASE = INDEX_BASE / "uploads"
PERSONAL_INDEX_PATH = str(PERSONAL_DATA_BASE / "personal_faiss_index")
NLU_EXAMPLES_INDEX_PATH = str(INDEX_BASE / "nlu_examples_faiss_index")
THEME_PATHS = {t: str(INDEX_BASE / f"faiss_index_{t.replace(' ', '').lower()}") for t in CONFIG["themes"]}
os.makedirs(UPLOADS_BASE, exist_ok=True)
os.makedirs(PERSONAL_DATA_BASE, exist_ok=True)
for p in THEME_PATHS.values(): os.makedirs(p, exist_ok=True)
vectorstores = {}
personal_vectorstore = None
nlu_vectorstore = None
test_fixtures = []
try:
personal_vectorstore = build_or_load_vectorstore([], PERSONAL_INDEX_PATH, is_personal=True)
except Exception:
personal_vectorstore = None
def bootstrap_nlu_vectorstore(example_file: str, index_path: str) -> FAISS:
if not os.path.exists(example_file):
print(f"WARNING: NLU example file not found at {example_file}. NLU will be less accurate.")
return build_or_load_vectorstore([], index_path)
docs = []
with open(example_file, "r", encoding="utf-8") as f:
for line in f:
try:
data = json.loads(line)
doc = Document(page_content=data["query"], metadata=data)
docs.append(doc)
except (json.JSONDecodeError, KeyError):
continue
print(f"Found and loaded {len(docs)} NLU training examples.")
if os.path.exists(index_path):
shutil.rmtree(index_path)
return build_or_load_vectorstore(docs, index_path)
def canonical_theme(tk: str) -> str: return tk if tk in CONFIG["themes"] else "All"
def theme_upload_dir(theme: str) -> str:
p = UPLOADS_BASE / f"theme_{canonical_theme(theme).replace(' ', '').lower()}"
p.mkdir(exist_ok=True)
return str(p)
def load_manifest(theme: str) -> Dict[str, Any]:
p = os.path.join(theme_upload_dir(theme), "manifest.json")
if os.path.exists(p):
try:
with open(p, "r", encoding="utf-8") as f: return json.load(f)
except Exception: pass
return {"files": {}}
def save_manifest(theme: str, man: Dict[str, Any]):
with open(os.path.join(theme_upload_dir(theme), "manifest.json"), "w", encoding="utf-8") as f: json.dump(man, f, indent=2)
def list_theme_files(theme: str) -> List[tuple[str, bool]]:
man = load_manifest(theme)
base = theme_upload_dir(theme)
found = [(n, bool(e)) for n, e in man.get("files", {}).items() if os.path.exists(os.path.join(base, n))]
existing = {n for n, e in found}
for name in sorted(os.listdir(base)):
if name not in existing and os.path.isfile(os.path.join(base, name)): found.append((name, False))
man["files"] = dict(found)
save_manifest(theme, man)
return found
def copy_into_theme(theme: str, src_path: str) -> str:
fname = os.path.basename(src_path)
dest = os.path.join(theme_upload_dir(theme), fname)
shutil.copy2(src_path, dest)
return dest
def seed_files_into_theme(theme: str):
SEED_FILES = [("sample_data/caregiving_tips.txt", True), ("sample_data/the_father_segments_enriched_harmonized_plus.jsonl", True), ("sample_data/still_alice_enriched_harmonized_plus.jsonl", True), ("sample_data/away_from_her_enriched_harmonized_plus.jsonl", True), ("sample_data/alive_inside_enriched_harmonized.jsonl", True)]
man, changed = load_manifest(theme), False
for path, enable in SEED_FILES:
if not os.path.exists(path): continue
fname = os.path.basename(path)
if not os.path.exists(os.path.join(theme_upload_dir(theme), fname)):
copy_into_theme(theme, path)
man["files"][fname] = bool(enable)
changed = True
if changed: save_manifest(theme, man)
def ensure_index(theme='All'):
theme = canonical_theme(theme)
if theme in vectorstores: return vectorstores[theme]
upload_dir = theme_upload_dir(theme)
enabled_files = [os.path.join(upload_dir, n) for n, enabled in list_theme_files(theme) if enabled]
index_path = THEME_PATHS.get(theme)
vectorstores[theme] = bootstrap_vectorstore(sample_paths=enabled_files, index_path=index_path)
return vectorstores[theme]
# --- Gradio Callbacks ---
def collect_settings(*args):
keys = ["role", "patient_name", "caregiver_name", "tone", "language", "tts_lang", "temperature", "behaviour_tag", "emotion_tag", "topic_tag", "active_theme", "tts_on", "debug_mode"]
return dict(zip(keys, args))
def parse_and_tag_entries(text_content: str, source: str, settings: dict = None) -> List[Document]:
docs_to_add = []
for entry in re.split(r'\n(?:---|--|-|-\*-|-\.-)\n', text_content):
if not entry.strip(): continue
lines = entry.strip().split('\n')
title_line = lines[0].split(':', 1)
title = title_line[1].strip() if len(title_line) > 1 and "title:" in lines[0].lower() else "Untitled Text Entry"
content_part = "\n".join(lines[1:])
content = content_part.split(':', 1)[1].strip() if "content:" in content_part.lower() else content_part.strip()
full_content = f"Title: {title}\n\nContent: {content}"
detected_tags = detect_tags_from_query(
content, nlu_vectorstore=nlu_vectorstore, behavior_options=CONFIG["behavior_tags"],
emotion_options=CONFIG["emotion_tags"], topic_options=CONFIG["topic_tags"],
context_options=CONFIG["context_tags"], settings=settings)
metadata = {"source": source, "title": title}
if detected_tags.get("detected_behaviors"): metadata["behaviors"] = [b.lower() for b in detected_tags["detected_behaviors"]]
if detected_tags.get("detected_emotion") != "None": metadata["emotion"] = detected_tags.get("detected_emotion").lower()
if detected_tags.get("detected_topic") != "None": metadata["topic_tags"] = [detected_tags.get("detected_topic").lower()]
if detected_tags.get("detected_contexts"): metadata["context_tags"] = [c.lower() for c in detected_tags["detected_contexts"]]
docs_to_add.append(Document(page_content=full_content, metadata=metadata))
return docs_to_add
def handle_add_knowledge(title, text_input, file_input, image_input, yt_url, settings):
global personal_vectorstore
docs_to_add = []
source, content = "Unknown", ""
if text_input and text_input.strip():
source, content = "Text Input", f"Title: {title or 'Untitled'}\n\nContent: {text_input}"
elif file_input:
source = os.path.basename(file_input.name)
if file_input.name.lower().endswith('.txt'):
with open(file_input.name, 'r', encoding='utf-8') as f: content = f.read()
else:
transcribed = transcribe_audio(file_input.name)
content = f"Title: {title or 'Audio/Video Note'}\n\nContent: {transcribed}"
elif image_input:
source, description = "Image Input", describe_image(image_input)
content = f"Title: {title or 'Image Note'}\n\nContent: {description}"
elif yt_url and ("youtube.com" in yt_url or "youtu.be" in yt_url):
try:
yt = YouTube(yt_url)
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as temp_audio_file:
yt.streams.get_audio_only().download(filename=temp_audio_file.name)
transcribed = transcribe_audio(temp_audio_file.name)
os.remove(temp_audio_file.name)
source, content = f"YouTube: {yt.title}", f"Title: {title or yt.title}\n\nContent: {transcribed}"
except Exception as e:
return f"Error processing YouTube link: {e}"
else:
return "Please provide content to add."
if content:
docs_to_add = parse_and_tag_entries(content, source, settings=settings)
if not docs_to_add: return "No processable content found to add."
if personal_vectorstore is None:
personal_vectorstore = build_or_load_vectorstore(docs_to_add, PERSONAL_INDEX_PATH, is_personal=True)
else:
personal_vectorstore.add_documents(docs_to_add)
personal_vectorstore.save_local(PERSONAL_INDEX_PATH)
return f"Successfully added {len(docs_to_add)} new memory/memories."
def chat_fn(user_text, audio_file, settings, chat_history):
global personal_vectorstore
if chat_history:
chat_history.reverse()
question = (user_text or "").strip()
if audio_file and not question:
try:
question = transcribe_audio(audio_file, lang=CONFIG["languages"].get(settings.get("tts_lang", "English"), "en"))
except Exception as e:
err_msg = f"Audio Error: {e}" if settings.get("debug_mode") else "Sorry, I couldn't understand the audio."
chat_history.append({"role": "assistant", "content": err_msg})
return "", None, chat_history[::-1]
if not question:
if chat_history:
chat_history.reverse()
return "", None, chat_history
chat_history.append({"role": "user", "content": question})
final_tags = { "scenario_tag": None, "emotion_tag": None, "topic_tag": None, "context_tags": [] }
manual_behavior = settings.get("behaviour_tag", "None")
manual_emotion = settings.get("emotion_tag", "None")
manual_topic = settings.get("topic_tag", "None")
if all(m == "None" for m in [manual_behavior, manual_emotion, manual_topic]):
detected_tags = detect_tags_from_query(
question, nlu_vectorstore=nlu_vectorstore, behavior_options=CONFIG["behavior_tags"],
emotion_options=CONFIG["emotion_tags"], topic_options=CONFIG["topic_tags"],
context_options=CONFIG["context_tags"], settings=settings)
behaviors = detected_tags.get("detected_behaviors")
if behaviors:
final_tags["scenario_tag"] = behaviors[0]
else:
final_tags["scenario_tag"] = None
final_tags["emotion_tag"] = detected_tags.get("detected_emotion")
final_tags["topic_tag"] = detected_tags.get("detected_topic")
final_tags["context_tags"] = detected_tags.get("detected_contexts", [])
detected_parts = [f"{k.split('_')[1]}=`{v}`" for k, v in final_tags.items() if v and v != "None"]
if detected_parts:
chat_history.append({"role": "assistant", "content": f"*(Auto-detected context: {', '.join(detected_parts)})*"})
else:
final_tags["scenario_tag"] = manual_behavior if manual_behavior != "None" else None
final_tags["emotion_tag"] = manual_emotion if manual_emotion != "None" else None
final_tags["topic_tag"] = manual_topic if manual_topic != "None" else None
vs_general = ensure_index(settings.get("active_theme", "All"))
if personal_vectorstore is None:
personal_vectorstore = build_or_load_vectorstore([], PERSONAL_INDEX_PATH, is_personal=True)
rag_settings = {k: settings.get(k) for k in ["role", "temperature", "language", "patient_name", "caregiver_name", "tone"]}
chain = make_rag_chain(vs_general, personal_vectorstore, **rag_settings)
response = answer_query(chain, question, chat_history=chat_history[:-1], **final_tags)
answer = response.get("answer", "[No answer found]")
chat_history.append({"role": "assistant", "content": answer})
if response.get("sources"):
chat_history.append({"role": "assistant", "content": f"*(Sources used: {', '.join(response['sources'])})*"})
audio_out = None
if settings.get("tts_on") and answer:
audio_out = synthesize_tts(answer, lang=CONFIG["languages"].get(settings.get("tts_lang"), "en"))
return "", gr.update(value=audio_out, visible=bool(audio_out)), chat_history[::-1]
def save_chat_to_memory(chat_history):
global personal_vectorstore
if chat_history:
chat_history.reverse()
if not chat_history: return "Nothing to save."
formatted_chat = [f"{m['role'].title()}: {m['content'].strip()}" for m in chat_history if not m['content'].strip().startswith("*(")]
if not formatted_chat: return "No conversation to save."
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
title = f"Conversation from {timestamp}"
full_content = f"Title: {title}\n\nContent:\n" + "\n".join(formatted_chat)
doc = Document(page_content=full_content, metadata={"source": "Saved Chat", "title": title})
if personal_vectorstore is None:
personal_vectorstore = build_or_load_vectorstore([doc], PERSONAL_INDEX_PATH, is_personal=True)
else:
personal_vectorstore.add_documents([doc])
personal_vectorstore.save_local(PERSONAL_INDEX_PATH)
return f"Conversation from {timestamp} saved."
def list_personal_memories():
global personal_vectorstore
if personal_vectorstore is None or not hasattr(personal_vectorstore.docstore, '_dict') or not personal_vectorstore.docstore._dict:
return gr.update(value=[["No memories", "", ""]]), gr.update(choices=[], value=None)
docs = list(personal_vectorstore.docstore._dict.values())
return gr.update(value=[[d.metadata.get('title', '...'), d.metadata.get('source', '...'), d.page_content] for d in docs]), gr.update(choices=[d.page_content for d in docs])
def delete_personal_memory(memory_to_delete):
global personal_vectorstore
if personal_vectorstore is None or not memory_to_delete: return "No memory selected."
all_docs = list(personal_vectorstore.docstore._dict.values())
docs_to_keep = [d for d in all_docs if d.page_content != memory_to_delete]
if len(all_docs) == len(docs_to_keep): return "Error: Could not find memory."
if not docs_to_keep:
if os.path.isdir(PERSONAL_INDEX_PATH): shutil.rmtree(PERSONAL_INDEX_PATH)
personal_vectorstore = build_or_load_vectorstore([], PERSONAL_INDEX_PATH, is_personal=True)
else:
new_vs = FAISS.from_documents(docs_to_keep, _default_embeddings())
new_vs.save_local(PERSONAL_INDEX_PATH)
personal_vectorstore = new_vs
return "Successfully deleted memory."
def upload_knowledge(files, theme):
for f in files: copy_into_theme(theme, f.name)
if theme in vectorstores: del vectorstores[theme]
return f"Uploaded {len(files)} file(s)."
def save_file_selection(theme, enabled):
man = load_manifest(theme)
for fname in man['files']: man['files'][fname] = fname in enabled
save_manifest(theme, man)
if theme in vectorstores: del vectorstores[theme]
return f"Settings saved for theme '{theme}'."
def refresh_file_list_ui(theme):
files = list_theme_files(theme)
return gr.update(choices=[f for f, _ in files], value=[f for f, en in files if en]), f"Found {len(files)} file(s)."
def auto_setup_on_load(theme):
if not os.listdir(theme_upload_dir(theme)): seed_files_into_theme(theme)
settings = collect_settings("caregiver", "", "", "warm", "English", "English", 0.7, "None", "None", "None", "All", True, False)
files_ui, status = refresh_file_list_ui(theme)
return settings, files_ui, status
def run_nlu_test(test_title: str):
if not test_title or not test_fixtures: return "Please select a test case.", None
fixture = next((f for f in test_fixtures if f["title"] == test_title), None)
if not fixture: return f"Error: Could not find test case '{test_title}'.", None
actual_raw = detect_tags_from_query(
fixture["turns"][0]["text"], nlu_vectorstore, CONFIG["behavior_tags"], CONFIG["emotion_tags"], CONFIG["topic_tags"], CONFIG["context_tags"]
)
actual = {"emotion": [actual_raw.get("detected_emotion")], "behaviors": actual_raw.get("detected_behaviors", []), "topic_tags": [actual_raw.get("detected_topic")], "context_tags": actual_raw.get("detected_contexts", [])}
pass_count, total_count, data = 0, 0, []
expected = fixture["expected"]
all_keys = set(expected.keys()) | set(actual.keys())
for key in sorted(list(all_keys)):
expected_set = set(expected.get(key, []))
if not expected_set: continue
total_count += 1
actual_set = set(a for a in actual.get(key, []) if a and a != "None")
is_pass = len(expected_set.intersection(actual_set)) > 0
if is_pass: pass_count += 1
data.append([key, ", ".join(sorted(list(expected_set))), ", ".join(sorted(list(actual_set))) or "None", "β
Pass" if is_pass else "β Fail"])
return f"## Test Result: {pass_count} / {total_count} Passed", data
def load_test_fixtures():
global test_fixtures
test_fixtures = []
fixtures_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "conversation_test_fixtures.jsonl")
if not os.path.exists(fixtures_path): return gr.update(choices=[])
with open(fixtures_path, "r", encoding="utf-8") as f:
for line in f: test_fixtures.append(json.loads(line))
return gr.update(choices=[f["title"] for f in test_fixtures])
def run_all_nlu_tests():
if not test_fixtures: load_test_fixtures()
if not test_fixtures: return "## No test fixtures found.", []
passed_tests, all_results = 0, []
for fixture in test_fixtures:
user_query = fixture["turns"][0]["text"]
expected_results = fixture["expected"]
actual_results_raw = detect_tags_from_query(user_query, nlu_vectorstore, CONFIG["behavior_tags"], CONFIG["emotion_tags"], CONFIG["topic_tags"], CONFIG["context_tags"])
actual_results = {"emotion": [actual_results_raw.get("detected_emotion")], "behaviors": actual_results_raw.get("detected_behaviors", []), "topic_tags": [actual_results_raw.get("detected_topic")], "context_tags": actual_results_raw.get("detected_contexts", [])}
pass_count, total_count = 0, 0
for key in sorted(list(expected_results.keys())):
expected_set = set(expected_results.get(key, []))
if not expected_set: continue
total_count += 1
actual_set = set(a for a in actual_results.get(key, []) if a and a != "None")
if len(expected_set.intersection(actual_set)) > 0: pass_count += 1
overall_result = "β Fail"
if total_count > 0:
pass_ratio = pass_count / total_count
if pass_ratio == 1.0: passed_tests += 1; overall_result = "β
Pass"
elif pass_ratio > 0.65: overall_result = "β οΈ Partial"
all_results.append([fixture["title"], overall_result, f"{pass_count} / {total_count}"])
pass_rate = (passed_tests / len(test_fixtures)) * 100 if test_fixtures else 0
return f"## Batch Summary: {passed_tests} / {len(test_fixtures)} Tests Passed ({pass_rate:.1f}%)", all_results
def test_save_file():
try:
path = PERSONAL_DATA_BASE / "persistence_test.txt"
path.write_text(f"File saved at: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
return f"β
Success! Wrote test file to: {path}"
except Exception as e: return f"β Error! Failed to write file: {e}"
def check_test_file():
path = PERSONAL_DATA_BASE / "persistence_test.txt"
if path.exists(): return f"β
Success! Found test file. Contents: '{path.read_text()}'"
return f"β Failure. Test file not found at: {path}"
# --- UI Definition ---
CSS = """
.gradio-container { font-size: 14px; }
#chatbot { min-height: 400px; }
#audio_in audio, #audio_out audio { max-height: 40px; }
#audio_in .waveform, #audio_out .waveform { display: none !important; }
#audio_in, #audio_out { min-height: 0px !important; }
"""
with gr.Blocks(theme=gr.themes.Soft(), css=CSS) as demo:
settings_state = gr.State({})
with gr.Tab("Chat"):
with gr.Row():
user_text = gr.Textbox(show_label=False, placeholder="Type your message here...", scale=7)
submit_btn = gr.Button("Send", variant="primary", scale=1)
with gr.Row():
audio_in = gr.Audio(sources=["microphone"], type="filepath", label="Voice Input", elem_id="audio_in")
audio_out = gr.Audio(label="Response Audio", autoplay=True, visible=True, elem_id="audio_out")
chatbot = gr.Chatbot(elem_id="chatbot", label="Conversation", type="messages")
chat_status = gr.Markdown()
with gr.Row():
clear_btn = gr.Button("Clear")
save_btn = gr.Button("Save to Memory")
with gr.Tab("Personalize"):
with gr.Accordion("Add to Personal Knowledge Base", open=True):
personal_title = gr.Textbox(label="Title")
personal_text = gr.Textbox(lines=5, label="Text Content")
with gr.Row():
personal_file = gr.File(label="Upload Audio/Video/Text File")
personal_image = gr.Image(type="filepath", label="Upload Image")
personal_yt_url = gr.Textbox(label="Or, provide a YouTube URL")
personal_add_btn = gr.Button("Add Knowledge", variant="primary")
personal_status = gr.Markdown()
gr.Markdown("### **Manage Personal Knowledge**")
with gr.Accordion("View/Hide Details", open=False):
personal_memory_display = gr.DataFrame(headers=["Title", "Source", "Content"], label="Saved Memories", row_count=(5, "dynamic"))
personal_refresh_btn = gr.Button("Refresh Memories")
personal_delete_selector = gr.Dropdown(label="Select memory to delete", scale=3, interactive=True)
personal_delete_btn = gr.Button("Delete Selected", variant="stop", scale=1)
personal_delete_status = gr.Markdown()
with gr.Tab("Testing"):
gr.Markdown("## NLU Context Detection Tests")
batch_summary_md = gr.Markdown("### Batch Test Summary: Not yet run.")
with gr.Row():
test_case_dropdown = gr.Dropdown(label="Select Single Test Case", scale=2)
run_test_btn = gr.Button("Run Single Test", scale=1)
run_all_btn = gr.Button("Run All Tests", variant="primary", scale=1)
test_status_md = gr.Markdown("### Test Results")
test_results_df = gr.DataFrame(label="Test Comparison", headers=["Test Case Title", "Result", "Categories Passed"], interactive=False)
with gr.Tab("Settings"):
with gr.Group():
gr.Markdown("## Conversation & Persona Settings")
with gr.Row():
role = gr.Radio(CONFIG["roles"], value="patient", label="Your Role")
patient_name = gr.Textbox(label="Patient's Name")
caregiver_name = gr.Textbox(label="Caregiver's Name")
with gr.Row():
temperature = gr.Slider(0.0, 1.2, value=0.7, step=0.1, label="Creativity")
tone = gr.Dropdown(CONFIG["tones"], value="warm", label="Response Tone")
with gr.Row():
behaviour_tag = gr.Dropdown(CONFIG["behavior_tags"], value="None", label="Behaviour Filter (Manual)")
emotion_tag = gr.Dropdown(CONFIG["emotion_tags"], value="None", label="Emotion Filter (Manual)")
topic_tag = gr.Dropdown(CONFIG["topic_tags"], value="None", label="Topic Tag Filter (Manual)")
with gr.Accordion("Language, Voice & Debugging", open=False):
language = gr.Dropdown(list(CONFIG["languages"].keys()), value="English", label="Response Language")
tts_lang = gr.Dropdown(list(CONFIG["languages"].keys()), value="English", label="Voice Language")
tts_on = gr.Checkbox(True, label="Enable Voice Response")
debug_mode = gr.Checkbox(False, label="Show Debug Info")
gr.Markdown("--- \n ## General Knowledge Base Management")
with gr.Row():
with gr.Column(scale=1):
files_in = gr.File(file_count="multiple", file_types=[".jsonl", ".txt"], label="Upload Knowledge Files")
upload_btn = gr.Button("Upload to Theme")
seed_btn = gr.Button("Import Sample Data")
mgmt_status = gr.Markdown()
with gr.Column(scale=2):
active_theme = gr.Radio(CONFIG["themes"], value="All", label="Active Knowledge Theme")
files_box = gr.CheckboxGroup(choices=[], label="Enable Files for Selected Theme")
with gr.Row():
save_files_btn = gr.Button("Save Selection", variant="primary")
refresh_btn = gr.Button("Refresh List")
with gr.Accordion("Persistence Test", open=False):
test_save_btn = gr.Button("1. Run Persistence Test (Save File)")
check_save_btn = gr.Button("3. Check for Test File")
test_status = gr.Markdown()
# --- Event Wiring ---
all_settings = [role, patient_name, caregiver_name, tone, language, tts_lang, temperature, behaviour_tag, emotion_tag, topic_tag, active_theme, tts_on, debug_mode]
for c in all_settings: c.change(fn=collect_settings, inputs=all_settings, outputs=settings_state)
submit_btn.click(fn=chat_fn, inputs=[user_text, audio_in, settings_state, chatbot], outputs=[user_text, audio_out, chatbot])
save_btn.click(fn=save_chat_to_memory, inputs=[chatbot], outputs=[chat_status])
clear_btn.click(lambda: (None, None, [], None, "", ""), outputs=[user_text, audio_out, chatbot, audio_in, user_text, chat_status])
personal_add_btn.click(fn=handle_add_knowledge, inputs=[personal_title, personal_text, personal_file, personal_image, personal_yt_url, settings_state], outputs=[personal_status]).then(lambda: (None, None, None, None, None), outputs=[personal_title, personal_text, personal_file, personal_image, personal_yt_url])
personal_refresh_btn.click(fn=list_personal_memories, inputs=None, outputs=[personal_memory_display, personal_delete_selector])
personal_delete_btn.click(fn=delete_personal_memory, inputs=[personal_delete_selector], outputs=[personal_delete_status]).then(fn=list_personal_memories, inputs=None, outputs=[personal_memory_display, personal_delete_selector])
upload_btn.click(upload_knowledge, inputs=[files_in, active_theme], outputs=[mgmt_status]).then(refresh_file_list_ui, inputs=[active_theme], outputs=[files_box, mgmt_status])
save_files_btn.click(save_file_selection, inputs=[active_theme, files_box], outputs=[mgmt_status])
seed_btn.click(seed_files_into_theme, inputs=[active_theme]).then(refresh_file_list_ui, inputs=[active_theme], outputs=[files_box, mgmt_status])
refresh_btn.click(refresh_file_list_ui, inputs=[active_theme], outputs=[files_box, mgmt_status])
active_theme.change(refresh_file_list_ui, inputs=[active_theme], outputs=[files_box, mgmt_status])
demo.load(auto_setup_on_load, inputs=[active_theme], outputs=[settings_state, files_box, mgmt_status])
demo.load(load_test_fixtures, outputs=[test_case_dropdown])
run_test_btn.click(fn=run_nlu_test, inputs=[test_case_dropdown], outputs=[test_status_md, test_results_df])
run_all_btn.click(fn=run_all_nlu_tests, outputs=[batch_summary_md, test_results_df])
test_save_btn.click(fn=test_save_file, inputs=None, outputs=[test_status])
check_save_btn.click(fn=check_test_file, inputs=None, outputs=[test_status])
# --- Startup Logic ---
def pre_load_indexes():
global personal_vectorstore, nlu_vectorstore
print("Pre-loading all indexes at startup...")
print(" - Loading NLU examples index...")
nlu_vectorstore = bootstrap_nlu_vectorstore("nlu_training_examples.jsonl", NLU_EXAMPLES_INDEX_PATH)
print(f" ...NLU index loaded.")
for theme in CONFIG["themes"]:
print(f" - Loading general index for theme: '{theme}'")
try:
ensure_index(theme)
print(f" ...'{theme}' theme loaded.")
except Exception as e:
print(f" ...Error loading theme '{theme}': {e}")
print(" - Loading personal knowledge index...")
try:
personal_vectorstore = build_or_load_vectorstore([], PERSONAL_INDEX_PATH, is_personal=True)
print(" ...Personal knowledge loaded.")
except Exception as e:
print(f" ...Error loading personal knowledge: {e}")
print("All indexes loaded. Application is ready.")
if __name__ == "__main__":
seed_files_into_theme('All')
pre_load_indexes()
demo.queue().launch(debug=True)
|