KeenWoo's picture
Update alz_companion/agent.py
fe8f736 verified
from __future__ import annotations
import os
import json
import base64
import time
import tempfile
import re
from typing import List, Dict, Any, Optional
try:
from openai import OpenAI
except Exception:
OpenAI = None
from langchain.schema import Document
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
try:
from gtts import gTTS
except Exception:
gTTS = None
from .prompts import (
SYSTEM_TEMPLATE, ANSWER_TEMPLATE_CALM, ANSWER_TEMPLATE_ADQ,
SAFETY_GUARDRAILS, RISK_FOOTER, render_emotion_guidelines,
NLU_ROUTER_PROMPT, SPECIALIST_CLASSIFIER_PROMPT,
ROUTER_PROMPT,
ANSWER_TEMPLATE_FACTUAL,
ANSWER_TEMPLATE_GENERAL_KNOWLEDGE,
ANSWER_TEMPLATE_GENERAL,
QUERY_EXPANSION_PROMPT
)
# -----------------------------
# Multimodal Processing Functions
# -----------------------------
def _openai_client() -> Optional[OpenAI]:
api_key = os.getenv("OPENAI_API_KEY", "").strip()
return OpenAI(api_key=api_key) if api_key and OpenAI else None
def describe_image(image_path: str) -> str:
client = _openai_client()
if not client:
return "(Image description failed: OpenAI API key not configured.)"
try:
extension = os.path.splitext(image_path)[1].lower()
mime_type = f"image/{'jpeg' if extension in ['.jpg', '.jpeg'] else extension.strip('.')}"
with open(image_path, "rb") as image_file:
base64_image = base64.b64encode(image_file.read()).decode('utf-8')
response = client.chat.completions.create(
model="gpt-4o",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "Describe this image concisely for a memory journal. Focus on people, places, and key objects. Example: 'A photo of John and Mary smiling on a bench at the park.'"},
{"type": "image_url", "image_url": {"url": f"data:{mime_type};base64,{base64_image}"}}
],
}
], max_tokens=100)
return response.choices[0].message.content or "No description available."
except Exception as e:
return f"[Image description error: {e}]"
# -----------------------------
# NLU Classification Function (Dynamic Version)
# -----------------------------
def detect_tags_from_query(
query: str,
nlu_vectorstore: FAISS,
behavior_options: list,
emotion_options: list,
topic_options: list,
context_options: list,
settings: dict = None
) -> Dict[str, Any]:
"""Uses a dynamic two-step NLU process: Route -> Retrieve Examples -> Classify."""
# --- STEP 1: Route the query to determine the primary goal ---
router_prompt = NLU_ROUTER_PROMPT.format(query=query)
primary_goal_raw = call_llm([{"role": "user", "content": router_prompt}], temperature=0.0).strip().lower()
# --- FIX START: Use separate variables for the filter (lowercase) and the prompt (Title Case) ---
goal_for_filter = "practical_planning" if "practical" in primary_goal_raw else "emotional_support"
goal_for_prompt = "Practical Planning" if "practical" in primary_goal_raw else "Emotional Support"
# --- FIX END ---
if settings and settings.get("debug_mode"):
print(f"\n--- NLU Router ---\nGoal: {goal_for_prompt} (Filter: '{goal_for_filter}')\n------------------\n")
# --- STEP 2: Retrieve relevant examples from the NLU vector store ---
retriever = nlu_vectorstore.as_retriever(
search_kwargs={"k": 2, "filter": {"primary_goal": goal_for_filter}} # <-- Use the correct lowercase filter
)
retrieved_docs = retriever.invoke(query)
# Format the retrieved examples for the prompt
selected_examples = "\n".join(
f"User Query: \"{doc.page_content}\"\n{json.dumps(doc.metadata['classification'], indent=4)}"
for doc in retrieved_docs
)
if not selected_examples:
selected_examples = "(No relevant examples found)"
if settings and settings.get("debug_mode"):
print("WARNING: NLU retriever found no examples for this query.")
# --- STEP 3: Use the Specialist Classifier with retrieved examples ---
behavior_str = ", ".join(f'"{opt}"' for opt in behavior_options if opt != "None")
emotion_str = ", ".join(f'"{opt}"' for opt in emotion_options if opt != "None")
topic_str = ", ".join(f'"{opt}"' for opt in topic_options if opt != "None")
context_str = ", ".join(f'"{opt}"' for opt in context_options if opt != "None")
prompt = SPECIALIST_CLASSIFIER_PROMPT.format(
primary_goal=goal_for_prompt, # Use Title Case for the prompt text
examples=selected_examples,
behavior_options=behavior_str,
emotion_options=emotion_str,
topic_options=topic_str,
context_options=context_str,
query=query
)
messages = [{"role": "system", "content": "You are a helpful NLU classification assistant."}, {"role": "user", "content": prompt}]
response_str = call_llm(messages, temperature=0.1)
if settings and settings.get("debug_mode"):
print(f"\n--- NLU Specialist Full Response ---\n{response_str}\n----------------------------------\n")
# --- STEP 4: Parse the final result ---
result_dict = {"detected_behaviors": [], "detected_emotion": "None", "detected_topic": "None", "detected_contexts": []}
try:
start_brace = response_str.find('{')
end_brace = response_str.rfind('}')
if start_brace != -1 and end_brace > start_brace:
json_str = response_str[start_brace : end_brace + 1]
result = json.loads(json_str)
behaviors = result.get("detected_behaviors")
if behaviors: # This checks for both None and empty list
result_dict["detected_behaviors"] = [b for b in behaviors if b in behavior_options]
# Fix bug to properly handle null values from the LLM and will no longer raise the TypeError.
# Use `or` to safely handle None, empty strings, etc.
result_dict["detected_emotion"] = result.get("detected_emotion") or "None"
result_dict["detected_topic"] = result.get("detected_topic") or "None"
contexts = result.get("detected_contexts")
if contexts: # This checks for both None and empty list
result_dict["detected_contexts"] = [c for c in contexts if c in context_options]
# Buggy code that can't handle a NULL case from LLM.
# result_dict["detected_behaviors"] = [b for b in result.get("detected_behaviors", []) if b in behavior_options]
# result_dict["detected_emotion"] = result.get("detected_emotion", "None")
# result_dict["detected_topic"] = result.get("detected_topic", "None")
# result_dict["detected_contexts"] = [c for c in result.get("detected_contexts", []) if c in context_options]
return result_dict
except (json.JSONDecodeError, AttributeError) as e:
print(f"ERROR parsing NLU Specialist JSON: {e}")
return result_dict
# -----------------------------
# Embeddings & VectorStore
# -----------------------------
def _default_embeddings():
model_name = os.getenv("EMBEDDINGS_MODEL", "sentence-transformers/all-MiniLM-L6-v2")
return HuggingFaceEmbeddings(model_name=model_name)
def build_or_load_vectorstore(docs: List[Document], index_path: str, is_personal: bool = False) -> FAISS:
os.makedirs(os.path.dirname(index_path), exist_ok=True)
if os.path.isdir(index_path) and os.path.exists(os.path.join(index_path, "index.faiss")):
try:
return FAISS.load_local(index_path, _default_embeddings(), allow_dangerous_deserialization=True)
except Exception: pass
if is_personal and not docs:
docs = [Document(page_content="(This is the start of the personal memory journal.)", metadata={"source": "placeholder"})]
vs = FAISS.from_documents(docs, _default_embeddings())
vs.save_local(index_path)
return vs
def texts_from_jsonl(path: str) -> List[Document]:
out: List[Document] = []
try:
with open(path, "r", encoding="utf-8") as f:
for i, line in enumerate(f):
obj = json.loads(line.strip())
txt = obj.get("text") or ""
if not txt.strip(): continue
md = {"source": os.path.basename(path), "chunk": i}
for k in ("behaviors", "emotion", "topic_tags", "context_tags"):
if k in obj and obj[k]: md[k] = obj[k]
out.append(Document(page_content=txt, metadata=md))
except Exception: return []
return out
def bootstrap_vectorstore(sample_paths: List[str] | None = None, index_path: str = "data/faiss_index") -> FAISS:
docs: List[Document] = []
for p in (sample_paths or []):
try:
if p.lower().endswith(".jsonl"):
docs.extend(texts_from_jsonl(p))
else:
with open(p, "r", encoding="utf-8", errors="ignore") as fh:
docs.append(Document(page_content=fh.read(), metadata={"source": os.path.basename(p)}))
except Exception: continue
if not docs:
docs = [Document(page_content="(empty index)", metadata={"source": "placeholder"})]
return build_or_load_vectorstore(docs, index_path=index_path)
# -----------------------------
# LLM Call
# -----------------------------
def call_llm(messages: List[Dict[str, str]], temperature: float = 0.6, stop: Optional[List[str]] = None) -> str:
client = _openai_client()
model = os.getenv("OPENAI_MODEL", "gpt-4o-mini")
if not client:
return "(Offline Mode: OpenAI API key not configured.)"
try:
api_args = {"model": model, "messages": messages, "temperature": float(temperature if temperature is not None else 0.6)}
if stop: api_args["stop"] = stop
resp = client.chat.completions.create(**api_args)
return (resp.choices[0].message.content or "").strip()
except Exception as e:
return f"[LLM API Error: {e}]"
# -----------------------------
# Prompting & RAG Chain
# -----------------------------
def make_rag_chain(
vs_general: FAISS,
vs_personal: FAISS,
*,
role: str = "patient",
temperature: float = 0.6,
language: str = "English",
patient_name: str = "the patient",
caregiver_name: str = "the caregiver",
tone: str = "warm",
):
"""Returns a callable that performs the complete, intelligent RAG process."""
def _format_docs(docs: List[Document], default_msg: str) -> str:
if not docs: return default_msg
unique_docs = {doc.page_content: doc for doc in docs}.values()
return "\n".join([f"- {d.page_content.strip()}" for d in unique_docs])
def _answer_fn(query: str, chat_history: List[Dict[str, str]], scenario_tag: Optional[str] = None, emotion_tag: Optional[str] = None, topic_tag: Optional[str] = None, context_tags: Optional[List[str]] = None) -> Dict[str, Any]:
router_messages = [{"role": "user", "content": ROUTER_PROMPT.format(query=query)}]
query_type = call_llm(router_messages, temperature=0.0).strip().lower()
print(f"Query classified as: {query_type}")
system_message = SYSTEM_TEMPLATE.format(tone=tone, language=language, patient_name=patient_name or "the patient", caregiver_name=caregiver_name or "the caregiver", guardrails=SAFETY_GUARDRAILS)
messages = [{"role": "system", "content": system_message}]
messages.extend(chat_history)
if "general_knowledge_question" in query_type:
user_prompt = ANSWER_TEMPLATE_GENERAL_KNOWLEDGE.format(question=query, language=language)
messages.append({"role": "user", "content": user_prompt})
answer = call_llm(messages, temperature=temperature)
return {"answer": answer, "sources": ["General Knowledge"]}
elif "factual_question" in query_type:
print(f"Performing query expansion for: '{query}'")
expansion_prompt = QUERY_EXPANSION_PROMPT.format(question=query)
expansion_response = call_llm([{"role": "user", "content": expansion_prompt}], temperature=0.1)
try:
clean_response = expansion_response.strip().replace("```json", "").replace("```", "")
expanded_queries = json.loads(clean_response)
search_queries = [query] + expanded_queries
except json.JSONDecodeError:
search_queries = [query]
print(f"Searching with queries: {search_queries}")
all_docs = []
for q in search_queries:
all_docs.extend(vs_personal.similarity_search(q, k=2))
all_docs.extend(vs_general.similarity_search(q, k=2))
context = _format_docs(all_docs, "(No relevant information found in the memory journal.)")
user_prompt = ANSWER_TEMPLATE_FACTUAL.format(context=context, question=query, language=language)
messages.append({"role": "user", "content": user_prompt})
answer = call_llm(messages, temperature=temperature)
sources = list(set(d.metadata.get("source", "unknown") for d in all_docs))
return {"answer": answer, "sources": sources}
elif "general_conversation" in query_type:
user_prompt = ANSWER_TEMPLATE_GENERAL.format(question=query, language=language)
messages.append({"role": "user", "content": user_prompt})
answer = call_llm(messages, temperature=temperature)
return {"answer": answer, "sources": []}
else: # Default to the original caregiving logic
# --- Reworked search strategy to handle filters correctly ---
# 1. Start with a general, unfiltered search to always get text-based matches.
personal_docs = vs_personal.similarity_search(query, k=3)
general_docs = vs_general.similarity_search(query, k=3)
# 2. Build a filter for simple equality checks (FAISS supported).
simple_search_filter = {}
if scenario_tag and scenario_tag != "None":
simple_search_filter["behaviors"] = scenario_tag.lower()
if emotion_tag and emotion_tag != "None":
simple_search_filter["emotion"] = emotion_tag.lower()
if topic_tag and topic_tag != "None":
simple_search_filter["topic_tags"] = topic_tag.lower()
# 3. If simple filters exist, perform a second, more specific search.
if simple_search_filter:
print(f"Performing additional search with filter: {simple_search_filter}")
personal_docs.extend(vs_personal.similarity_search(query, k=2, filter=simple_search_filter))
general_docs.extend(vs_general.similarity_search(query, k=2, filter=simple_search_filter))
# 4. If context_tags exist (unsupported by 'in'), loop through them and perform separate searches.
if context_tags:
print(f"Performing looped context tag search for: {context_tags}")
for tag in context_tags:
context_filter = {"context_tags": tag.lower()}
personal_docs.extend(vs_personal.similarity_search(query, k=1, filter=context_filter))
general_docs.extend(vs_general.similarity_search(query, k=1, filter=context_filter))
# 5. Combine and de-duplicate all results.
all_docs_care = list({doc.page_content: doc for doc in personal_docs + general_docs}.values())
# --- End of reworked search strategy ---
personal_context = _format_docs([d for d in all_docs_care if d in personal_docs], "(No relevant personal memories found.)")
general_context = _format_docs([d for d in all_docs_care if d in general_docs], "(No general guidance found.)")
first_emotion = None
for doc in all_docs_care:
if "emotion" in doc.metadata and doc.metadata["emotion"]:
emotion_data = doc.metadata["emotion"]
if isinstance(emotion_data, list): first_emotion = emotion_data[0]
else: first_emotion = emotion_data
if first_emotion: break
emotions_context = render_emotion_guidelines(first_emotion or emotion_tag)
is_tagged_scenario = (scenario_tag and scenario_tag != "None") or (emotion_tag and emotion_tag != "None") or (first_emotion is not None)
template = ANSWER_TEMPLATE_ADQ if is_tagged_scenario else ANSWER_TEMPLATE_CALM
if template == ANSWER_TEMPLATE_ADQ:
user_prompt = template.format(general_context=general_context, personal_context=personal_context, question=query, scenario_tag=scenario_tag, emotions_context=emotions_context, role=role, language=language)
else:
combined_context = f"General Guidance:\n{general_context}\n\nPersonal Memories:\n{personal_context}"
user_prompt = template.format(context=combined_context, question=query, language=language)
messages.append({"role": "user", "content": user_prompt})
answer = call_llm(messages, temperature=temperature)
high_risk_scenarios = ["exit_seeking", "wandering", "elopement"]
if scenario_tag and scenario_tag.lower() in high_risk_scenarios:
answer += f"\n\n---\n{RISK_FOOTER}"
sources = list(set(d.metadata.get("source", "unknown") for d in all_docs_care))
return {"answer": answer, "sources": sources}
return _answer_fn
def answer_query(chain, question: str, **kwargs) -> Dict[str, Any]:
if not callable(chain): return {"answer": "[Error: RAG chain is not callable]", "sources": []}
try:
return chain(question, **kwargs)
except Exception as e:
print(f"ERROR in answer_query: {e}")
return {"answer": f"[Error executing chain: {e}]", "sources": []}
# -----------------------------
# TTS & Transcription
# -----------------------------
def synthesize_tts(text: str, lang: str = "en"):
if not text or gTTS is None: return None
try:
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as fp:
tts = gTTS(text=text, lang=(lang or "en"))
tts.save(fp.name)
return fp.name
except Exception:
return None
def transcribe_audio(filepath: str, lang: str = "en"):
client = _openai_client()
if not client: return "[Transcription failed: API key not configured]"
api_args = {"model": "whisper-1"}
if lang and lang != "auto": api_args["language"] = lang
with open(filepath, "rb") as audio_file:
transcription = client.audio.transcriptions.create(file=audio_file, **api_args)
return transcription.text