Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from transformers import AutoProcessor, AutoModelForCausalLM, GenerationConfig, TextIteratorStreamer | |
from PIL import Image | |
import gradio as gr | |
import spaces | |
import threading | |
# --- 1. Model and Processor Setup --- | |
model_id = "bharatgenai/patram-7b-instruct" | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
print(f"Using device: {device}") | |
# Load processor and model | |
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
torch_dtype=torch.float16, | |
device_map="auto", | |
trust_remote_code=True | |
) | |
print("Model and processor loaded successfully.") | |
# Default system prompt | |
DEFAULT_SYSTEM_PROMPT = """You are Patram, a helpful AI assistant created by BharatGenAI. You are designed to analyze images and answer questions about them. | |
Think step by step before providing your answers. Be detailed, accurate, and helpful in your responses. | |
You can understand both text and image inputs to provide comprehensive answers to user queries.""" | |
# --- Define and apply a more flexible chat template --- | |
chat_template = """{% for message in messages %} | |
{{ message['role'].capitalize() }}: {{ message['content'] }} | |
{% if not loop.last %}{{ '\n' }}{% endif %} | |
{% endfor %} | |
{% if add_generation_prompt %}{{ 'Assistant:' }}{% endif %}""" | |
processor.tokenizer.chat_template = chat_template | |
# --- 2. Gradio Chatbot Logic --- | |
def generate_response(user_message, messages_list, image_pil, max_new_tokens, top_p, top_k, temperature): | |
""" | |
Generate a response from the model using streaming. | |
""" | |
try: | |
# Create a copy of the messages list to avoid modifying the original | |
current_messages = messages_list.copy() | |
current_messages.append({"role": "user", "content": user_message}) | |
print(current_messages) | |
# Use the processor to apply the chat template | |
prompt = processor.tokenizer.apply_chat_template( | |
current_messages, | |
tokenize=False, | |
add_generation_prompt=True | |
) | |
if image_pil: | |
# Preprocess image and the entire formatted prompt | |
inputs = processor.process(images=[image_pil], text=prompt) | |
else: | |
inputs = processor.process(text=prompt) | |
inputs = {k: v.to(device).unsqueeze(0) for k, v in inputs.items()} | |
inputs = {k: v.half() if v.dtype == torch.float32 else v for k, v in inputs.items()} | |
# Initialize the streamer | |
streamer = TextIteratorStreamer(processor.tokenizer, skip_prompt=True, skip_special_tokens=True) | |
# Define generation config | |
generation_config = GenerationConfig( | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
eos_token_id=processor.tokenizer.eos_token_id, | |
pad_token_id=processor.tokenizer.pad_token_id | |
) | |
# Generate output using model's specific method | |
generate_kwargs = dict( | |
batch=inputs, | |
streamer=streamer, | |
generation_config=generation_config | |
) | |
# Start the generation in a separate thread to allow streaming | |
thread = threading.Thread(target=model.generate_from_batch, kwargs=generate_kwargs) | |
thread.start() | |
# Yield the generated tokens as they become available | |
response = "" | |
for new_token in streamer: | |
response += new_token | |
yield response | |
except Exception as e: | |
print(f"Error during inference: {e}") | |
yield f"Sorry, an error occurred during processing: {e}" | |
def process_chat(user_message, chatbot_display, messages_list, image_pil, max_new_tokens, top_p, top_k, temperature): | |
""" | |
This function handles the chat logic for a single turn with streaming. | |
""" | |
# Append user's message to the chatbot display list | |
chatbot_display.append((user_message, "")) | |
# Generate the response using streaming | |
response = "" | |
for chunk in generate_response(user_message, messages_list, image_pil, max_new_tokens, top_p, top_k, temperature): | |
response = chunk | |
# Update the chatbot display with the current response | |
chatbot_display[-1] = (user_message, response) | |
yield chatbot_display, messages_list, "" | |
# Append assistant's response to the conversation history | |
messages_list.append({"role": "assistant", "content": response}) | |
def clear_chat(): | |
"""Resets the chat, history, and image.""" | |
return [], [], None, "", 256, 0.9, 50, 0.6, DEFAULT_SYSTEM_PROMPT | |
# --- 3. Gradio Interface Definition --- | |
with gr.Blocks(theme=gr.themes.Default(primary_hue="blue", secondary_hue="neutral")) as demo: | |
gr.Markdown("# π€ Patram-7B-Instruct Chatbot") | |
gr.Markdown("Upload an image and ask questions about it. The chatbot will remember the conversation context.") | |
# State variables to hold conversation history and image | |
messages_list = gr.State([]) | |
image_input = gr.State(None) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
image_input_render = gr.Image(type="pil", label="Upload Image") | |
clear_btn = gr.Button("ποΈ Clear Chat and Image") | |
with gr.Accordion("Generation Parameters", open=False): | |
system_prompt = gr.Textbox( label="System Prompt", value=DEFAULT_SYSTEM_PROMPT, interactive=True, lines=5) | |
max_new_tokens = gr.Slider(minimum=32, maximum=4096, value=256, step=32, label="Max New Tokens") | |
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-p (Nucleus Sampling)") | |
top_k = gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Top-k") | |
temperature = gr.Slider(minimum=0.1, maximum=1.5, value=0.6, step=0.05, label="Temperature") | |
with gr.Column(scale=2): | |
chatbot_display = gr.Chatbot( | |
label="Conversation", | |
bubble_full_width=False, | |
height=500 | |
) | |
with gr.Row(): | |
user_textbox = gr.Textbox( | |
placeholder="Type your question here...", | |
show_label=False, | |
scale=4, | |
container=False | |
) | |
submit_btn = gr.Button("Send", variant="primary", scale=1, min_width=0) | |
# Initialize messages_list with system prompt | |
demo.load( | |
fn=lambda: [{"role": "system", "content": DEFAULT_SYSTEM_PROMPT}], | |
inputs=None, | |
outputs=messages_list | |
) | |
# Update messages_list when system prompt changes | |
system_prompt.change( | |
fn=lambda system_prompt: [{"role": "system", "content": system_prompt}], | |
inputs=system_prompt, | |
outputs=messages_list | |
) | |
# --- Event Listeners --- | |
# Define the action for submitting a message (via button or enter key) | |
submit_action = user_textbox.submit( | |
fn=process_chat, | |
inputs=[user_textbox, chatbot_display, messages_list, image_input, max_new_tokens, top_p, top_k, temperature], | |
outputs=[chatbot_display, messages_list, user_textbox] | |
) | |
submit_btn.click( | |
fn=process_chat, | |
inputs=[user_textbox, chatbot_display, messages_list, image_input, max_new_tokens, top_p, top_k, temperature], | |
outputs=[chatbot_display, messages_list, user_textbox] | |
) | |
# Define the action for the clear button | |
clear_btn.click( | |
fn=clear_chat, | |
inputs=[], | |
outputs=[chatbot_display, messages_list, image_input_render, user_textbox, max_new_tokens, top_p, top_k, temperature, system_prompt], | |
queue=False | |
) | |
# Update the image state when a new image is uploaded | |
image_input_render.change( | |
fn=lambda x: x, | |
inputs=image_input_render, | |
outputs=image_input | |
) | |
if __name__ == "__main__": | |
demo.launch(mcp_server=True) |