Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,12 @@
|
|
1 |
import torch
|
2 |
-
from transformers import AutoProcessor, AutoModelForCausalLM, GenerationConfig
|
3 |
from PIL import Image
|
4 |
import gradio as gr
|
5 |
import spaces
|
|
|
6 |
|
7 |
# --- 1. Model and Processor Setup ---
|
|
|
8 |
model_id = "bharatgenai/patram-7b-instruct"
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
print(f"Using device: {device}")
|
@@ -37,15 +39,15 @@ processor.tokenizer.chat_template = chat_template
|
|
37 |
|
38 |
# --- 2. Gradio Chatbot Logic ---
|
39 |
@spaces.GPU
|
40 |
-
def
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
messages_list.append({"role": "user", "content": user_message})
|
46 |
-
chatbot_display.append((user_message, None))
|
47 |
-
|
48 |
try:
|
|
|
|
|
|
|
|
|
49 |
prompt = processor.tokenizer.apply_chat_template(
|
50 |
messages_list,
|
51 |
tokenize=False,
|
@@ -55,44 +57,87 @@ def process_chat(user_message, chatbot_display, messages_list, image_pil):
|
|
55 |
# Preprocess image and the entire formatted prompt
|
56 |
inputs = processor.process(images=[image_pil], text=prompt)
|
57 |
inputs = {k: v.to(device).unsqueeze(0) for k, v in inputs.items()}
|
58 |
-
|
59 |
-
# Ensure all tensors are in the same dtype
|
60 |
inputs = {k: v.half() if v.dtype == torch.float32 else v for k, v in inputs.items()}
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
# Generate output using model's specific method
|
63 |
-
|
64 |
-
inputs,
|
65 |
-
|
|
|
66 |
tokenizer=processor.tokenizer
|
67 |
)
|
68 |
|
69 |
-
|
70 |
-
|
|
|
71 |
|
72 |
-
|
73 |
-
|
|
|
74 |
|
75 |
except Exception as e:
|
76 |
print(f"Error during inference: {e}")
|
77 |
-
|
78 |
-
chatbot_display[-1] = (user_message, error_message)
|
79 |
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
-
|
|
|
|
|
|
|
83 |
"""Resets the chat, history, and image."""
|
84 |
-
return [], [], None, "
|
85 |
|
86 |
# --- 3. Gradio Interface Definition ---
|
87 |
with gr.Blocks(theme=gr.themes.Default(primary_hue="blue", secondary_hue="neutral")) as demo:
|
88 |
gr.Markdown("# 🤖 Patram-7B-Instruct Chatbot")
|
89 |
gr.Markdown("Upload an image and ask questions about it. The chatbot will remember the conversation context.")
|
90 |
|
|
|
91 |
messages_list = gr.State([])
|
|
|
|
|
92 |
with gr.Row():
|
93 |
with gr.Column(scale=1):
|
94 |
-
|
95 |
clear_btn = gr.Button("🗑️ Clear Chat and Image")
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
with gr.Column(scale=2):
|
98 |
chatbot_display = gr.Chatbot(
|
@@ -110,23 +155,33 @@ with gr.Blocks(theme=gr.themes.Default(primary_hue="blue", secondary_hue="neutra
|
|
110 |
submit_btn = gr.Button("Send", variant="primary", scale=1, min_width=0)
|
111 |
|
112 |
# --- Event Listeners ---
|
|
|
|
|
113 |
submit_action = user_textbox.submit(
|
114 |
fn=process_chat,
|
115 |
-
inputs=[user_textbox, chatbot_display, messages_list, image_input],
|
116 |
outputs=[chatbot_display, messages_list, user_textbox]
|
117 |
)
|
118 |
submit_btn.click(
|
119 |
fn=process_chat,
|
120 |
-
inputs=[user_textbox, chatbot_display, messages_list, image_input],
|
121 |
outputs=[chatbot_display, messages_list, user_textbox]
|
122 |
)
|
123 |
|
|
|
124 |
clear_btn.click(
|
125 |
-
fn=
|
126 |
inputs=[],
|
127 |
-
outputs=[chatbot_display, messages_list,
|
128 |
queue=False
|
129 |
)
|
130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
if __name__ == "__main__":
|
132 |
-
demo.launch(
|
|
|
1 |
import torch
|
2 |
+
from transformers import AutoProcessor, AutoModelForCausalLM, GenerationConfig, TextIteratorStreamer
|
3 |
from PIL import Image
|
4 |
import gradio as gr
|
5 |
import spaces
|
6 |
+
import threading
|
7 |
|
8 |
# --- 1. Model and Processor Setup ---
|
9 |
+
|
10 |
model_id = "bharatgenai/patram-7b-instruct"
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
print(f"Using device: {device}")
|
|
|
39 |
|
40 |
# --- 2. Gradio Chatbot Logic ---
|
41 |
@spaces.GPU
|
42 |
+
def generate_response(user_message, messages_list, image_pil, max_new_tokens, top_p, top_k, temperature):
|
43 |
+
"""
|
44 |
+
Generate a response from the model using streaming.
|
45 |
+
"""
|
|
|
|
|
|
|
|
|
46 |
try:
|
47 |
+
# Append user's message to the conversation history for the model
|
48 |
+
messages_list.append({"role": "user", "content": user_message})
|
49 |
+
|
50 |
+
# Use the processor to apply the chat template
|
51 |
prompt = processor.tokenizer.apply_chat_template(
|
52 |
messages_list,
|
53 |
tokenize=False,
|
|
|
57 |
# Preprocess image and the entire formatted prompt
|
58 |
inputs = processor.process(images=[image_pil], text=prompt)
|
59 |
inputs = {k: v.to(device).unsqueeze(0) for k, v in inputs.items()}
|
|
|
|
|
60 |
inputs = {k: v.half() if v.dtype == torch.float32 else v for k, v in inputs.items()}
|
61 |
|
62 |
+
# Initialize the streamer
|
63 |
+
streamer = TextIteratorStreamer(processor.tokenizer, skip_prompt=True, skip_special_tokens=True)
|
64 |
+
|
65 |
+
# Define generation config
|
66 |
+
generation_config = GenerationConfig(
|
67 |
+
max_new_tokens=max_new_tokens,
|
68 |
+
do_sample=True,
|
69 |
+
top_p=top_p,
|
70 |
+
top_k=top_k,
|
71 |
+
temperature=temperature,
|
72 |
+
stop_strings="<|endoftext|>"
|
73 |
+
)
|
74 |
+
|
75 |
# Generate output using model's specific method
|
76 |
+
generate_kwargs = dict(
|
77 |
+
**inputs,
|
78 |
+
streamer=streamer,
|
79 |
+
generation_config=generation_config,
|
80 |
tokenizer=processor.tokenizer
|
81 |
)
|
82 |
|
83 |
+
# Start the generation in a separate thread to allow streaming
|
84 |
+
thread = threading.Thread(target=model.generate_from_batch, kwargs=generate_kwargs)
|
85 |
+
thread.start()
|
86 |
|
87 |
+
# Yield the generated tokens as they become available
|
88 |
+
for new_token in streamer:
|
89 |
+
yield new_token
|
90 |
|
91 |
except Exception as e:
|
92 |
print(f"Error during inference: {e}")
|
93 |
+
yield f"Sorry, an error occurred during processing: {e}"
|
|
|
94 |
|
95 |
+
def process_chat(user_message, chatbot_display, messages_list, image_pil, max_new_tokens, top_p, top_k, temperature):
|
96 |
+
"""
|
97 |
+
This function handles the chat logic for a single turn with streaming.
|
98 |
+
"""
|
99 |
+
if image_pil is None:
|
100 |
+
chatbot_display.append((user_message, "Please upload an image first to start the conversation."))
|
101 |
+
return chatbot_display, messages_list, ""
|
102 |
+
|
103 |
+
# Append user's message to the chatbot display list
|
104 |
+
chatbot_display.append((user_message, ""))
|
105 |
+
|
106 |
+
# Initialize the response as an empty string
|
107 |
+
response = ""
|
108 |
+
|
109 |
+
# Generate the response using streaming
|
110 |
+
for chunk in generate_response(user_message, messages_list, image_pil, max_new_tokens, top_p, top_k, temperature):
|
111 |
+
response += chunk
|
112 |
+
# Update the chatbot display with the current response
|
113 |
+
chatbot_display[-1] = (user_message, response)
|
114 |
+
yield chatbot_display, messages_list, ""
|
115 |
|
116 |
+
# Append assistant's response to the conversation history
|
117 |
+
messages_list.append({"role": "assistant", "content": response})
|
118 |
+
|
119 |
+
def clear_chat():
|
120 |
"""Resets the chat, history, and image."""
|
121 |
+
return [], [], None, "", 256, 0.9, 50, 0.6
|
122 |
|
123 |
# --- 3. Gradio Interface Definition ---
|
124 |
with gr.Blocks(theme=gr.themes.Default(primary_hue="blue", secondary_hue="neutral")) as demo:
|
125 |
gr.Markdown("# 🤖 Patram-7B-Instruct Chatbot")
|
126 |
gr.Markdown("Upload an image and ask questions about it. The chatbot will remember the conversation context.")
|
127 |
|
128 |
+
# State variables to hold conversation history and image
|
129 |
messages_list = gr.State([])
|
130 |
+
image_input = gr.State(None)
|
131 |
+
|
132 |
with gr.Row():
|
133 |
with gr.Column(scale=1):
|
134 |
+
image_input_render = gr.Image(type="pil", label="Upload Image")
|
135 |
clear_btn = gr.Button("🗑️ Clear Chat and Image")
|
136 |
+
with gr.Accordion("Generation Parameters", open=False):
|
137 |
+
max_new_tokens = gr.Slider(minimum=32, maximum=512, value=256, step=32, label="Max New Tokens")
|
138 |
+
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.1, label="Top-p (Nucleus Sampling)")
|
139 |
+
top_k = gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Top-k")
|
140 |
+
temperature = gr.Slider(minimum=0.1, maximum=1.5, value=0.6, step=0.1, label="Temperature")
|
141 |
|
142 |
with gr.Column(scale=2):
|
143 |
chatbot_display = gr.Chatbot(
|
|
|
155 |
submit_btn = gr.Button("Send", variant="primary", scale=1, min_width=0)
|
156 |
|
157 |
# --- Event Listeners ---
|
158 |
+
|
159 |
+
# Define the action for submitting a message (via button or enter key)
|
160 |
submit_action = user_textbox.submit(
|
161 |
fn=process_chat,
|
162 |
+
inputs=[user_textbox, chatbot_display, messages_list, image_input, max_new_tokens, top_p, top_k, temperature],
|
163 |
outputs=[chatbot_display, messages_list, user_textbox]
|
164 |
)
|
165 |
submit_btn.click(
|
166 |
fn=process_chat,
|
167 |
+
inputs=[user_textbox, chatbot_display, messages_list, image_input, max_new_tokens, top_p, top_k, temperature],
|
168 |
outputs=[chatbot_display, messages_list, user_textbox]
|
169 |
)
|
170 |
|
171 |
+
# Define the action for the clear button
|
172 |
clear_btn.click(
|
173 |
+
fn=clear_chat,
|
174 |
inputs=[],
|
175 |
+
outputs=[chatbot_display, messages_list, image_input_render, user_textbox, max_new_tokens, top_p, top_k, temperature],
|
176 |
queue=False
|
177 |
)
|
178 |
|
179 |
+
# Update the image state when a new image is uploaded
|
180 |
+
image_input_render.change(
|
181 |
+
fn=lambda x: x,
|
182 |
+
inputs=image_input_render,
|
183 |
+
outputs=image_input
|
184 |
+
)
|
185 |
+
|
186 |
if __name__ == "__main__":
|
187 |
+
demo.launch()
|