File size: 4,272 Bytes
27e25ed
 
79cfd6f
27e25ed
 
 
 
 
 
 
 
 
 
 
79cfd6f
 
27e25ed
 
08a7d3b
 
27e25ed
 
08a7d3b
27e25ed
79cfd6f
27e25ed
 
 
 
 
 
 
 
 
 
 
 
15c3ac0
27e25ed
be0b516
27e25ed
79cfd6f
 
 
27e25ed
be0b516
27e25ed
 
 
 
 
 
 
 
 
c03c574
27e25ed
 
 
 
 
 
 
 
c03c574
27e25ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79cfd6f
 
 
 
 
 
 
be0b516
79cfd6f
 
550f6cc
79cfd6f
2130dab
be0b516
 
 
 
 
550f6cc
be0b516
2130dab
be0b516
79cfd6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27e25ed
 
79cfd6f
 
 
 
 
 
27e25ed
 
79cfd6f
 
be0b516
79cfd6f
 
27e25ed
be0b516
27e25ed
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import os
import pandas as pd
import gradio as gr

from langchain.vectorstores import Chroma
from langchain.embeddings import OpenAIEmbeddings
from langchain.llms import OpenAI
from langchain.chat_models import ChatOpenAI
from langchain.chains import RetrievalQA

def Loading():
    return "๋ฐ์ดํ„ฐ ๋กœ๋”ฉ ์ค‘..."

    
def LoadData(openai_key):
        
    if openai_key is not None:
        
        os.environ["OPENAI_API_KEY"] = openai_key
        
        persist_directory = 'realdb_LLM'

        embedding = OpenAIEmbeddings()


        vectordb = Chroma(
            persist_directory=persist_directory, 
            embedding_function=embedding
        )

        global retriever
        retriever = vectordb.as_retriever(search_kwargs={"k": 1})
        
        return "์ค€๋น„ ์™„๋ฃŒ"
    else:
        return "์‚ฌ์šฉํ•˜์‹œ๋Š” API Key๋ฅผ ์ž…๋ ฅํ•˜์—ฌ ์ฃผ์‹œ๊ธฐ ๋ฐ”๋ž๋‹ˆ๋‹ค."


# ์ฑ—๋ด‡์˜ ๋‹ต๋ณ€์„ ์ฒ˜๋ฆฌํ•˜๋Š” ํ•จ์ˆ˜
def respond(message, chat_history, temperature, top_p):
    try:
        
        print(temperature)

        qa_chain = RetrievalQA.from_chain_type(
            llm=OpenAI(temperature=temperature, top_p=top_p),
            # llm=OpenAI(temperature=0.4), 
            # llm=ChatOpenAI(temperature=0),
            chain_type="stuff", 
            retriever=retriever
        )

        result = qa_chain(message)
        
        bot_message = result['result']
        
        # ์ฑ„ํŒ… ๊ธฐ๋ก์— ์‚ฌ์šฉ์ž์˜ ๋ฉ”์‹œ์ง€์™€ ๋ด‡์˜ ์‘๋‹ต์„ ์ถ”๊ฐ€.
        chat_history.append((message, bot_message))
        
        return "", chat_history
    except:
        chat_history.append(("", "API Key ์ž…๋ ฅ ์š”๋ง"))
        
        return " ", chat_history
    

# ์ฑ—๋ด‡ ์„ค๋ช…
title = """
<div style="text-align: center; max-width: 500px; margin: 0 auto;">
    <div>
        <h1>Pretraining Chatbot V2 Real</h1>
    </div>
    <p style="margin-bottom: 10px; font-size: 94%">
        OpenAI LLM๋ฅผ ์ด์šฉํ•œ Chatbot (Similarity)
    </p>
</div>
"""

# ๊พธ๋ฏธ๊ธฐ
css="""
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
"""
with gr.Blocks(css=css) as UnivChatbot:
    with gr.Column(elem_id="col-container"):
        gr.HTML(title)

    with gr.Row():
        with gr.Column(scale=3):
            openai_key = gr.Textbox(label="You OpenAI API key", type="password", placeholder="OpenAI Key Type", elem_id="InputKey", show_label=False, container=False)
        with gr.Column(scale=1):
            langchain_status = gr.Textbox(placeholder="Status", interactive=False, show_label=False, container=False)
    
    with gr.Row():
        with gr.Column(scale=4):
            temperature = gr.Slider(
            label="Temperature",
            minimum=0,
            maximum=2.0,
            step=0.01,
            value=0.7,
        )
        with gr.Column(scale=4):
            top_p = gr.Slider(
            label="Top_p",
            minimum=0,
            maximum=1,
            step=0.01,
            value=0.5,
        )
        with gr.Column(scale=1):
            chk_key = gr.Button("ํ™•์ธ", variant="primary")
                    
    chatbot = gr.Chatbot(label="๋Œ€ํ•™ ์ฑ—๋ด‡์‹œ์Šคํ…œ(OpenAI LLM)", elem_id="chatbot") # ์ƒ๋‹จ ์ขŒ์ธก 

    with gr.Row():
        with gr.Column(scale=9):
            msg = gr.Textbox(label="์ž…๋ ฅ", placeholder="๊ถ๊ธˆํ•˜์‹  ๋‚ด์—ญ์„ ์ž…๋ ฅํ•˜์—ฌ ์ฃผ์„ธ์š”.", elem_id="InputQuery", show_label=False, container=False)
        
    with gr.Row():
        with gr.Column(scale=1):
            submit = gr.Button("์ „์†ก", variant="primary")
        with gr.Column(scale=1):
            clear = gr.Button("์ดˆ๊ธฐํ™”", variant="stop")

    #chk_key.click(Loading, None, langchain_status, queue=False)  
    chk_key.click(
        fn=LoadData, 
        inputs=[openai_key], 
        outputs=[langchain_status], 
        queue=False
    )
    
    # ์‚ฌ์šฉ์ž์˜ ์ž…๋ ฅ์„ ์ œ์ถœ(submit)ํ•˜๋ฉด respond ํ•จ์ˆ˜๊ฐ€ ํ˜ธ์ถœ.
    msg.submit(
        fn=respond, 
        inputs=[msg, chatbot, temperature, top_p], 
        outputs=[msg, chatbot]
    )

    submit.click(respond, [msg, chatbot, temperature, top_p], [msg, chatbot])

    # '์ดˆ๊ธฐํ™”' ๋ฒ„ํŠผ์„ ํด๋ฆญํ•˜๋ฉด ์ฑ„ํŒ… ๊ธฐ๋ก์„ ์ดˆ๊ธฐํ™”.
    clear.click(lambda: None, None, chatbot, queue=False)

  
UnivChatbot.launch()