Spaces:
Sleeping
Sleeping
import streamlit as st | |
import requests | |
import os | |
# Load API token from environment | |
API_TOKEN = os.getenv("HF_API_TOKEN") | |
if not API_TOKEN: | |
st.error("⚠️ Hugging Face API token is missing! Set `HF_API_TOKEN` in your environment variables.") | |
st.stop() # Stop execution if the token is missing | |
# Define model API endpoint | |
MODEL_ID = "bigcode/starcoder" | |
API_URL = f"https://api-inference.huggingface.co/models/{MODEL_ID}" | |
HEADERS = {"Authorization": f"Bearer {API_TOKEN}"} | |
def translate_code(code_snippet, source_lang, target_lang): | |
"""Translates code from one language to another using Hugging Face API.""" | |
prompt = f"""### Task: Convert {source_lang} code to {target_lang}. | |
{source_lang} Code: | |
```{source_lang.lower()} | |
{code_snippet} | |
``` | |
Now convert it to {target_lang}: | |
```{target_lang.lower()} | |
""" | |
try: | |
response = requests.post(API_URL, headers=HEADERS, json={ | |
"inputs": prompt, | |
"parameters": { | |
"max_new_tokens": 200, | |
"temperature": 0.2, | |
"top_k": 50, | |
} | |
}) | |
if response.status_code == 200: | |
output = response.json() | |
if isinstance(output, list) and len(output) > 0: | |
generated_text = output[0].get("generated_text", "") | |
# Extract translated code only | |
translated_code = generated_text.split(f"```{target_lang.lower()}")[-1].strip() | |
translated_code = translated_code.replace("```", "").strip() | |
return translated_code if translated_code else "⚠️ Translation failed. No valid output received." | |
else: | |
return "⚠️ Unexpected response format from API." | |
elif response.status_code == 400: | |
return "⚠️ Error: Invalid request. Check input format." | |
elif response.status_code == 401: | |
return "⚠️ Error: Unauthorized. Check your API token." | |
elif response.status_code == 403: | |
return "⚠️ Error: Access forbidden. You may need special access to this model." | |
elif response.status_code == 503: | |
return "⚠️ Error: Model is loading. Please wait and try again." | |
else: | |
return f"⚠️ Error {response.status_code}: {response.text}" | |
except requests.exceptions.RequestException as e: | |
return f"⚠️ Network Error: {str(e)}" | |
# Streamlit UI | |
st.title("🔄 Code Translator using StarCoder") | |
st.write("Translate code between different programming languages using AI.") | |
# Define language options | |
languages = ["Python", "Java", "C", "C++"] | |
source_lang = st.selectbox("Select source language", languages) | |
target_lang = st.selectbox("Select target language", languages) | |
code_input = st.text_area("Enter your code here:", height=200) | |
if st.button("Translate"): | |
if source_lang == target_lang: | |
st.warning("⚠️ Source and target languages cannot be the same.") | |
elif code_input.strip(): | |
with st.spinner("Translating..."): | |
translated_code = translate_code(code_input, source_lang, target_lang) | |
st.subheader(f"Translated {target_lang} Code:") | |
st.code(translated_code, language=target_lang.lower()) | |
else: | |
st.warning("⚠️ Please enter some code before translating.") | |