Spaces:
Sleeping
Sleeping
File size: 11,095 Bytes
c14f8f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
# version 2: added custom prompts.
import os
import json
import sqlite3
from datetime import datetime
import streamlit as st
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_chroma import Chroma
from langchain_groq import ChatGroq
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain.prompts import PromptTemplate
from vectorize_documents import embeddings # If needed elsewhere
# Load config
working_dir = os.path.dirname(os.path.abspath(__file__))
config_data = json.load(open(f"{working_dir}/config.json"))
GROQ_API_KEY = config_data["GROQ_API_KEY"]
os.environ["GROQ_API_KEY"] = GROQ_API_KEY
# Set up the database
def setup_db():
conn = sqlite3.connect("chat_history.db", check_same_thread=False)
cursor = conn.cursor()
cursor.execute("""
CREATE TABLE IF NOT EXISTS chat_histories (
id INTEGER PRIMARY KEY AUTOINCREMENT,
username TEXT,
timestamp TEXT,
day TEXT,
user_message TEXT,
assistant_response TEXT
)
""")
conn.commit()
return conn
# Set up vectorstore
def setup_vectorstore():
embeddings = HuggingFaceEmbeddings()
vectorstore = Chroma(persist_directory="Vector_db", embedding_function=embeddings)
return vectorstore
# Custom prompt template
custom_prompt_template = PromptTemplate.from_template("""
You are a helpful assistant that helps users choose laptops.
1. Analyze the user's query, take information from vectordb and then give top 3 laptops to user from Relevent information that is context.
2. Keep suggestions clear and concise with names, specs, and reasons only from relevant information context.
Relevant Information:
{context}
Chat History:
{chat_history}
User Query:
{question}
Assistant Response:
""")
# Set up the chatbot chain with a specific model
def chat_chain(vectorstore, model_name):
llm = ChatGroq(model=model_name, temperature=0.3)
retriever = vectorstore.as_retriever()
memory = ConversationBufferMemory(
llm=llm,
output_key="answer",
memory_key="chat_history",
return_messages=True
)
chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=retriever,
memory=memory,
combine_docs_chain_kwargs={"prompt": custom_prompt_template},
return_source_documents=True,
verbose=True
)
return chain
# Streamlit UI setup
st.set_page_config(page_title="ByteX-Ai", page_icon="🤖AI", layout="centered")
st.title("🤖 ByteX-Ai")
st.subheader("Hey! Get your Laptop!!")
# Initialize DB connection
if "conn" not in st.session_state:
st.session_state.conn = setup_db()
# Prompt user to log in
if "username" not in st.session_state:
username = st.text_input("Enter your name to proceed:")
if username:
with st.spinner("Loading chatbot interface... Please wait."):
st.session_state.username = username
st.session_state.chat_history = []
st.session_state.vectorstore = setup_vectorstore()
st.success(f"Welcome, {username}! Now select a model to start chatting.")
else:
username = st.session_state.username
# Model selection options
model_options = [
"gemma2-9b-it",
"llama-3.1-8b-instant",
"llama3-70b-8192",
"llama3-8b-8192"
]
selected_model = st.selectbox("Choose a model:", model_options)
# Ensure vectorstore exists
if "vectorstore" not in st.session_state:
st.session_state.vectorstore = setup_vectorstore()
# Set or update the selected model
if "selected_model" not in st.session_state:
st.session_state.selected_model = selected_model
# Reset conversational_chain if model changes or not yet initialized
if ("conversational_chain" not in st.session_state) or (st.session_state.selected_model != selected_model):
st.session_state.selected_model = selected_model
st.session_state.conversational_chain = chat_chain(st.session_state.vectorstore, selected_model)
st.session_state.chat_history = []
# Reset chat manually
if st.button("🔄 Reset Chat"):
st.session_state.chat_history = []
st.session_state.conversational_chain = chat_chain(st.session_state.vectorstore, st.session_state.selected_model)
st.success("Chat reset!")
# Show chat UI
if "username" in st.session_state:
st.subheader(f"Hello {username}, start your query below!")
if st.session_state.chat_history:
for message in st.session_state.chat_history:
if message['role'] == 'user':
with st.chat_message("user"):
st.markdown(message["content"])
elif message['role'] == 'assistant':
with st.chat_message("assistant"):
st.markdown(message["content"])
user_input = st.chat_input("Ask AI....")
if user_input:
with st.spinner("Processing your query... Please wait."):
st.session_state.chat_history.append({"role": "user", "content": user_input})
with st.chat_message("user"):
st.markdown(user_input)
with st.chat_message("assistant"):
response = st.session_state.conversational_chain({"question": user_input})
assistant_response = response["answer"]
st.markdown(assistant_response)
st.session_state.chat_history.append({"role": "assistant", "content": assistant_response})
# Version 1: working properly but there is no prompt refinement.
# import os
# import json
# import sqlite3
# from datetime import datetime
# import streamlit as st
# from langchain_huggingface import HuggingFaceEmbeddings
# from langchain_chroma import Chroma
# from langchain_groq import ChatGroq
# from langchain.memory import ConversationBufferMemory
# from langchain.chains import ConversationalRetrievalChain
# from vectorize_documents import embeddings # If needed elsewhere
# # Load config
# working_dir = os.path.dirname(os.path.abspath(__file__))
# config_data = json.load(open(f"{working_dir}/config.json"))
# GROQ_API_KEY = config_data["GROQ_API_KEY"]
# os.environ["GROQ_API_KEY"] = GROQ_API_KEY
# # Set up the database
# def setup_db():
# conn = sqlite3.connect("chat_history.db", check_same_thread=False)
# cursor = conn.cursor()
# cursor.execute("""
# CREATE TABLE IF NOT EXISTS chat_histories (
# id INTEGER PRIMARY KEY AUTOINCREMENT,
# username TEXT,
# timestamp TEXT,
# day TEXT,
# user_message TEXT,
# assistant_response TEXT
# )
# """)
# conn.commit()
# return conn
# # Set up vectorstore
# def setup_vectorstore():
# embeddings = HuggingFaceEmbeddings()
# vectorstore = Chroma(persist_directory="Vector_db", embedding_function=embeddings)
# return vectorstore
# # Set up the chatbot chain with a specific model
# def chat_chain(vectorstore, model_name):
# llm = ChatGroq(model=model_name, temperature=0)
# retriever = vectorstore.as_retriever()
# memory = ConversationBufferMemory(
# llm=llm,
# output_key="answer",
# memory_key="chat_history",
# return_messages=True
# )
# chain = ConversationalRetrievalChain.from_llm(
# llm=llm,
# retriever=retriever,
# chain_type="stuff",
# memory=memory,
# verbose=True,
# return_source_documents=True
# )
# return chain
# # Streamlit UI setup
# st.set_page_config(page_title="ByteX-Ai", page_icon="🤖AI", layout="centered")
# st.title("🤖 ByteX-Ai")
# st.subheader("Hey! Get your Laptop!!")
# # Initialize DB connection
# if "conn" not in st.session_state:
# st.session_state.conn = setup_db()
# # Prompt user to log in
# if "username" not in st.session_state:
# username = st.text_input("Enter your name to proceed:")
# if username:
# with st.spinner("Loading chatbot interface... Please wait."):
# st.session_state.username = username
# st.session_state.chat_history = []
# st.session_state.vectorstore = setup_vectorstore()
# st.success(f"Welcome, {username}! Now select a model to start chatting.")
# else:
# username = st.session_state.username
# # Model selection options
# model_options = [
# "gemma2-9b-it",
# "llama-3.1-8b-instant",
# "llama3-70b-8192",
# "llama3-8b-8192"
# ]
# # Model dropdown
# selected_model = st.selectbox("Choose a model:", model_options)
# # Ensure vectorstore exists
# if "vectorstore" not in st.session_state:
# st.session_state.vectorstore = setup_vectorstore()
# # Set or update the selected model
# if "selected_model" not in st.session_state:
# st.session_state.selected_model = selected_model
# # Reset conversational_chain if model changes or not yet initialized
# if ("conversational_chain" not in st.session_state) or (st.session_state.selected_model != selected_model):
# st.session_state.selected_model = selected_model
# st.session_state.conversational_chain = chat_chain(st.session_state.vectorstore, selected_model)
# st.session_state.chat_history = []
# # Reset chat manually
# if st.button("🔄 Reset Chat"):
# st.session_state.chat_history = []
# st.session_state.conversational_chain = chat_chain(st.session_state.vectorstore, st.session_state.selected_model)
# st.success("Chat reset!")
# # Show chat UI
# if "username" in st.session_state:
# st.subheader(f"Hello {username}, start your query below!")
# if st.session_state.chat_history:
# for message in st.session_state.chat_history:
# if message['role'] == 'user':
# with st.chat_message("user"):
# st.markdown(message["content"])
# elif message['role'] == 'assistant':
# with st.chat_message("assistant"):
# st.markdown(message["content"])
# user_input = st.chat_input("Ask AI....")
# if user_input:
# with st.spinner("Processing your query... Please wait."):
# st.session_state.chat_history.append({"role": "user", "content": user_input})
# with st.chat_message("user"):
# st.markdown(user_input)
# with st.chat_message("assistant"):
# response = st.session_state.conversational_chain({"question": user_input})
# assistant_response = response["answer"]
# st.markdown(assistant_response)
# st.session_state.chat_history.append({"role": "assistant", "content": assistant_response})
|