File size: 11,095 Bytes
c14f8f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
# version 2: added custom prompts.

import os
import json
import sqlite3
from datetime import datetime
import streamlit as st
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_chroma import Chroma
from langchain_groq import ChatGroq
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain.prompts import PromptTemplate

from vectorize_documents import embeddings  # If needed elsewhere

# Load config
working_dir = os.path.dirname(os.path.abspath(__file__))
config_data = json.load(open(f"{working_dir}/config.json"))
GROQ_API_KEY = config_data["GROQ_API_KEY"]
os.environ["GROQ_API_KEY"] = GROQ_API_KEY

# Set up the database
def setup_db():
    conn = sqlite3.connect("chat_history.db", check_same_thread=False)
    cursor = conn.cursor()
    cursor.execute("""

        CREATE TABLE IF NOT EXISTS chat_histories (

            id INTEGER PRIMARY KEY AUTOINCREMENT,

            username TEXT,

            timestamp TEXT,

            day TEXT,

            user_message TEXT,

            assistant_response TEXT

        )

    """)
    conn.commit()
    return conn

# Set up vectorstore
def setup_vectorstore():
    embeddings = HuggingFaceEmbeddings()
    vectorstore = Chroma(persist_directory="Vector_db", embedding_function=embeddings)
    return vectorstore

# Custom prompt template
custom_prompt_template = PromptTemplate.from_template("""

You are a helpful assistant that helps users choose laptops.



1. Analyze the user's query, take information from vectordb and then give top 3 laptops to user from Relevent information that is context.                                                      

2. Keep suggestions clear and concise with names, specs, and reasons only from relevant information context.                                                     



Relevant Information:

{context}



Chat History:

{chat_history}



User Query:

{question}



Assistant Response:

""")


# Set up the chatbot chain with a specific model
def chat_chain(vectorstore, model_name):
    llm = ChatGroq(model=model_name, temperature=0.3)
    retriever = vectorstore.as_retriever()
    memory = ConversationBufferMemory(
        llm=llm,
        output_key="answer",
        memory_key="chat_history",
        return_messages=True
    )
    chain = ConversationalRetrievalChain.from_llm(
        llm=llm,
        retriever=retriever,
        memory=memory,
        combine_docs_chain_kwargs={"prompt": custom_prompt_template},
        return_source_documents=True,
        verbose=True
    )
    return chain

# Streamlit UI setup
st.set_page_config(page_title="ByteX-Ai", page_icon="🤖AI", layout="centered")
st.title("🤖 ByteX-Ai")
st.subheader("Hey! Get your Laptop!!")

# Initialize DB connection
if "conn" not in st.session_state:
    st.session_state.conn = setup_db()

# Prompt user to log in
if "username" not in st.session_state:
    username = st.text_input("Enter your name to proceed:")
    if username:
        with st.spinner("Loading chatbot interface... Please wait."):

            st.session_state.username = username
            st.session_state.chat_history = []
            st.session_state.vectorstore = setup_vectorstore()
            st.success(f"Welcome, {username}! Now select a model to start chatting.")
else:
    username = st.session_state.username

# Model selection options
model_options = [
    "gemma2-9b-it",
    "llama-3.1-8b-instant",
    "llama3-70b-8192",
    "llama3-8b-8192"
]

selected_model = st.selectbox("Choose a model:", model_options)

# Ensure vectorstore exists
if "vectorstore" not in st.session_state:
    st.session_state.vectorstore = setup_vectorstore()

# Set or update the selected model
if "selected_model" not in st.session_state:
    st.session_state.selected_model = selected_model

# Reset conversational_chain if model changes or not yet initialized
if ("conversational_chain" not in st.session_state) or (st.session_state.selected_model != selected_model):
    st.session_state.selected_model = selected_model
    st.session_state.conversational_chain = chat_chain(st.session_state.vectorstore, selected_model)
    st.session_state.chat_history = []

# Reset chat manually
if st.button("🔄 Reset Chat"):
    st.session_state.chat_history = []
    st.session_state.conversational_chain = chat_chain(st.session_state.vectorstore, st.session_state.selected_model)
    st.success("Chat reset!")

# Show chat UI
if "username" in st.session_state:
    st.subheader(f"Hello {username}, start your query below!")

    if st.session_state.chat_history:
        for message in st.session_state.chat_history:
            if message['role'] == 'user':
                with st.chat_message("user"):
                    st.markdown(message["content"])
            elif message['role'] == 'assistant':
                with st.chat_message("assistant"):
                    st.markdown(message["content"])

    user_input = st.chat_input("Ask AI....")

    if user_input:
        with st.spinner("Processing your query... Please wait."):
            st.session_state.chat_history.append({"role": "user", "content": user_input})

            with st.chat_message("user"):
                st.markdown(user_input)

            with st.chat_message("assistant"):
                response = st.session_state.conversational_chain({"question": user_input})
                assistant_response = response["answer"]
                st.markdown(assistant_response)

                st.session_state.chat_history.append({"role": "assistant", "content": assistant_response})











# Version 1: working properly but there is no prompt refinement.

# import os
# import json
# import sqlite3
# from datetime import datetime
# import streamlit as st
# from langchain_huggingface import HuggingFaceEmbeddings
# from langchain_chroma import Chroma
# from langchain_groq import ChatGroq
# from langchain.memory import ConversationBufferMemory
# from langchain.chains import ConversationalRetrievalChain

# from vectorize_documents import embeddings  # If needed elsewhere

# # Load config
# working_dir = os.path.dirname(os.path.abspath(__file__))
# config_data = json.load(open(f"{working_dir}/config.json"))
# GROQ_API_KEY = config_data["GROQ_API_KEY"]
# os.environ["GROQ_API_KEY"] = GROQ_API_KEY

# # Set up the database
# def setup_db():
#     conn = sqlite3.connect("chat_history.db", check_same_thread=False)
#     cursor = conn.cursor()
#     cursor.execute("""
#         CREATE TABLE IF NOT EXISTS chat_histories (
#             id INTEGER PRIMARY KEY AUTOINCREMENT,
#             username TEXT,
#             timestamp TEXT,
#             day TEXT,
#             user_message TEXT,
#             assistant_response TEXT
#         )
#     """)
#     conn.commit()
#     return conn

# # Set up vectorstore
# def setup_vectorstore():
#     embeddings = HuggingFaceEmbeddings()
#     vectorstore = Chroma(persist_directory="Vector_db", embedding_function=embeddings)
#     return vectorstore

# # Set up the chatbot chain with a specific model
# def chat_chain(vectorstore, model_name):
#     llm = ChatGroq(model=model_name, temperature=0)
#     retriever = vectorstore.as_retriever()
#     memory = ConversationBufferMemory(
#         llm=llm,
#         output_key="answer",
#         memory_key="chat_history",
#         return_messages=True
#     )
#     chain = ConversationalRetrievalChain.from_llm(
#         llm=llm,
#         retriever=retriever,
#         chain_type="stuff",
#         memory=memory,
#         verbose=True,
#         return_source_documents=True
#     )
#     return chain

# # Streamlit UI setup
# st.set_page_config(page_title="ByteX-Ai", page_icon="🤖AI", layout="centered")
# st.title("🤖 ByteX-Ai")
# st.subheader("Hey! Get your Laptop!!")

# # Initialize DB connection
# if "conn" not in st.session_state:
#     st.session_state.conn = setup_db()

# # Prompt user to log in
# if "username" not in st.session_state:
#     username = st.text_input("Enter your name to proceed:")
#     if username:
#         with st.spinner("Loading chatbot interface... Please wait."):
#             st.session_state.username = username
#             st.session_state.chat_history = []
#             st.session_state.vectorstore = setup_vectorstore()
#             st.success(f"Welcome, {username}! Now select a model to start chatting.")
# else:
#     username = st.session_state.username

# # Model selection options
# model_options = [
#     "gemma2-9b-it",
#     "llama-3.1-8b-instant",
#     "llama3-70b-8192",
#     "llama3-8b-8192"
# ]

# # Model dropdown
# selected_model = st.selectbox("Choose a model:", model_options)

# # Ensure vectorstore exists
# if "vectorstore" not in st.session_state:
#     st.session_state.vectorstore = setup_vectorstore()

# # Set or update the selected model
# if "selected_model" not in st.session_state:
#     st.session_state.selected_model = selected_model

# # Reset conversational_chain if model changes or not yet initialized
# if ("conversational_chain" not in st.session_state) or (st.session_state.selected_model != selected_model):
#     st.session_state.selected_model = selected_model
#     st.session_state.conversational_chain = chat_chain(st.session_state.vectorstore, selected_model)
#     st.session_state.chat_history = []

# # Reset chat manually
# if st.button("🔄 Reset Chat"):
#     st.session_state.chat_history = []
#     st.session_state.conversational_chain = chat_chain(st.session_state.vectorstore, st.session_state.selected_model)
#     st.success("Chat reset!")


# # Show chat UI
# if "username" in st.session_state:
#     st.subheader(f"Hello {username}, start your query below!")

#     if st.session_state.chat_history:
#         for message in st.session_state.chat_history:
#             if message['role'] == 'user':
#                 with st.chat_message("user"):
#                     st.markdown(message["content"])
#             elif message['role'] == 'assistant':
#                 with st.chat_message("assistant"):
#                     st.markdown(message["content"])

#     user_input = st.chat_input("Ask AI....")

#     if user_input:
#         with st.spinner("Processing your query... Please wait."):
#             st.session_state.chat_history.append({"role": "user", "content": user_input})

#             with st.chat_message("user"):
#                 st.markdown(user_input)

#             with st.chat_message("assistant"):
#                 response = st.session_state.conversational_chain({"question": user_input})
#                 assistant_response = response["answer"]
#                 st.markdown(assistant_response)

#                 st.session_state.chat_history.append({"role": "assistant", "content": assistant_response})