Update translation.py
Browse files- translation.py +19 -15
translation.py
CHANGED
@@ -1,37 +1,41 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import MarianTokenizer, MarianMTModel
|
|
|
3 |
|
4 |
@st.cache_resource
|
5 |
def _load_default_model():
|
6 |
model_name = "Helsinki-NLP/opus-mt-en-fr"
|
7 |
-
|
|
|
|
|
8 |
|
9 |
@st.cache_resource
|
10 |
def load_model(src_lang, tgt_lang):
|
11 |
try:
|
12 |
model_name = f"Helsinki-NLP/opus-mt-{src_lang}-{tgt_lang}"
|
13 |
-
|
|
|
|
|
14 |
except Exception as e:
|
15 |
-
st.warning(f"No direct model for {src_lang} to {tgt_lang}.
|
16 |
return _load_default_model()
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
def translate(text, source_lang, target_lang):
|
21 |
-
if not text:
|
22 |
-
return "No text provided."
|
23 |
src_code = {"English": "en", "French": "fr", "Spanish": "es", "German": "de",
|
24 |
"Hindi": "hi", "Chinese": "zh", "Arabic": "ar", "Russian": "ru", "Japanese": "ja"}.get(source_lang, "en")
|
25 |
tgt_code = {"English": "en", "French": "fr", "Spanish": "es", "German": "de",
|
26 |
"Hindi": "hi", "Chinese": "zh", "Arabic": "ar", "Russian": "ru", "Japanese": "ja"}.get(target_lang, "fr")
|
27 |
tokenizer, model = load_model(src_code, tgt_code)
|
28 |
-
|
29 |
-
|
30 |
-
translated = model.generate(**inputs)
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
35 |
|
36 |
LANGUAGES = {"English": "en", "French": "fr", "Spanish": "es", "German": "de",
|
37 |
"Hindi": "hi", "Chinese": "zh", "Arabic": "ar", "Russian": "ru", "Japanese": "ja"}
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import MarianTokenizer, MarianMTModel
|
3 |
+
import torch
|
4 |
|
5 |
@st.cache_resource
|
6 |
def _load_default_model():
|
7 |
model_name = "Helsinki-NLP/opus-mt-en-fr"
|
8 |
+
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
9 |
+
model = MarianMTModel.from_pretrained(model_name)
|
10 |
+
return tokenizer, model
|
11 |
|
12 |
@st.cache_resource
|
13 |
def load_model(src_lang, tgt_lang):
|
14 |
try:
|
15 |
model_name = f"Helsinki-NLP/opus-mt-{src_lang}-{tgt_lang}"
|
16 |
+
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
17 |
+
model = MarianMTModel.from_pretrained(model_name)
|
18 |
+
return tokenizer, model
|
19 |
except Exception as e:
|
20 |
+
st.warning(f"No direct model for {src_lang} to {tgt_lang}. Using cached en-fr. Error: {str(e)}")
|
21 |
return _load_default_model()
|
22 |
|
23 |
+
@st.cache_data
|
24 |
+
def translate_cached(text, source_lang, target_lang):
|
|
|
|
|
|
|
25 |
src_code = {"English": "en", "French": "fr", "Spanish": "es", "German": "de",
|
26 |
"Hindi": "hi", "Chinese": "zh", "Arabic": "ar", "Russian": "ru", "Japanese": "ja"}.get(source_lang, "en")
|
27 |
tgt_code = {"English": "en", "French": "fr", "Spanish": "es", "German": "de",
|
28 |
"Hindi": "hi", "Chinese": "zh", "Arabic": "ar", "Russian": "ru", "Japanese": "ja"}.get(target_lang, "fr")
|
29 |
tokenizer, model = load_model(src_code, tgt_code)
|
30 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=500)
|
31 |
+
with torch.no_grad():
|
32 |
+
translated = model.generate(**inputs, max_length=500)
|
33 |
+
return tokenizer.decode(translated[0], skip_special_tokens=True)
|
34 |
+
|
35 |
+
def translate(text, source_lang, target_lang):
|
36 |
+
if not text:
|
37 |
+
return "No text provided."
|
38 |
+
return translate_cached(text, source_lang, target_lang)
|
39 |
|
40 |
LANGUAGES = {"English": "en", "French": "fr", "Spanish": "es", "German": "de",
|
41 |
"Hindi": "hi", "Chinese": "zh", "Arabic": "ar", "Russian": "ru", "Japanese": "ja"}
|