Update translation.py
Browse files- translation.py +10 -11
translation.py
CHANGED
@@ -2,9 +2,15 @@ import streamlit as st
|
|
2 |
from transformers import MarianTokenizer, MarianMTModel
|
3 |
import torch
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
@st.cache_resource
|
6 |
def _load_default_model():
|
7 |
-
model_name = "Helsinki-NLP/opus-mt-en-
|
8 |
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
9 |
model = MarianMTModel.from_pretrained(model_name)
|
10 |
return tokenizer, model
|
@@ -19,21 +25,17 @@ def load_model(source_lang, target_lang):
|
|
19 |
model = MarianMTModel.from_pretrained(model_name)
|
20 |
return tokenizer, model
|
21 |
except Exception as e:
|
22 |
-
st.warning(f"No direct model for {source_lang} to {target_lang}.
|
23 |
return _load_default_model()
|
24 |
|
25 |
@st.cache_data(ttl=3600)
|
26 |
def translate_cached(text, source_lang, target_lang):
|
27 |
-
|
28 |
-
"Hindi": "hi", "Chinese": "zh", "Arabic": "ar", "Russian": "ru", "Japanese": "ja"}.get(source_lang, "en")
|
29 |
-
tgt_code = {"English": "en", "French": "fr", "Spanish": "es", "German": "de",
|
30 |
-
"Hindi": "hi", "Chinese": "zh", "Arabic": "ar", "Russian": "ru", "Japanese": "ja"}.get(target_lang, "fr")
|
31 |
-
tokenizer, model = load_model(src_code, tgt_code)
|
32 |
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=500)
|
33 |
with torch.no_grad():
|
34 |
translated = model.generate(**inputs, max_length=500, num_beams=2, early_stopping=True)
|
35 |
translated_text = tokenizer.decode(translated[0], skip_special_tokens=True)
|
36 |
-
return translated_text if translated_text.strip()
|
37 |
|
38 |
def translate(text, source_lang, target_lang):
|
39 |
if not text:
|
@@ -43,6 +45,3 @@ def translate(text, source_lang, target_lang):
|
|
43 |
except Exception as e:
|
44 |
st.error(f"Translation error: {str(e)}. Using input as fallback.")
|
45 |
return text
|
46 |
-
|
47 |
-
LANGUAGES = {"English": "en", "French": "fr", "Spanish": "es", "German": "de",
|
48 |
-
"Hindi": "hi", "Chinese": "zh", "Arabic": "ar", "Russian": "ru", "Japanese": "ja"}
|
|
|
2 |
from transformers import MarianTokenizer, MarianMTModel
|
3 |
import torch
|
4 |
|
5 |
+
LANGUAGES = {
|
6 |
+
"en": ("English", "English"), "fr": ("Français", "French"), "es": ("Español", "Spanish"),
|
7 |
+
"de": ("Deutsch", "German"), "hi": ("हिन्दी", "Hindi"), "zh": ("中文", "Chinese"),
|
8 |
+
"ar": ("العربية", "Arabic"), "ru": ("Русский", "Russian"), "ja": ("日本語", "Japanese")
|
9 |
+
}
|
10 |
+
|
11 |
@st.cache_resource
|
12 |
def _load_default_model():
|
13 |
+
model_name = "Helsinki-NLP/opus-mt-en-hi"
|
14 |
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
15 |
model = MarianMTModel.from_pretrained(model_name)
|
16 |
return tokenizer, model
|
|
|
25 |
model = MarianMTModel.from_pretrained(model_name)
|
26 |
return tokenizer, model
|
27 |
except Exception as e:
|
28 |
+
st.warning(f"No direct model for {source_lang} to {target_lang}. Using en-hi fallback.")
|
29 |
return _load_default_model()
|
30 |
|
31 |
@st.cache_data(ttl=3600)
|
32 |
def translate_cached(text, source_lang, target_lang):
|
33 |
+
tokenizer, model = load_model(source_lang, target_lang)
|
|
|
|
|
|
|
|
|
34 |
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=500)
|
35 |
with torch.no_grad():
|
36 |
translated = model.generate(**inputs, max_length=500, num_beams=2, early_stopping=True)
|
37 |
translated_text = tokenizer.decode(translated[0], skip_special_tokens=True)
|
38 |
+
return translated_text if translated_text.strip() and len(translated_text.split()) >= 2 else text
|
39 |
|
40 |
def translate(text, source_lang, target_lang):
|
41 |
if not text:
|
|
|
45 |
except Exception as e:
|
46 |
st.error(f"Translation error: {str(e)}. Using input as fallback.")
|
47 |
return text
|
|
|
|
|
|