Spaces:
Running
Running
File size: 39,718 Bytes
c6b8d44 402a682 c6b8d44 402a682 c6b8d44 fe2497b c6b8d44 402a682 c6b8d44 402a682 c6b8d44 402a682 c6b8d44 402a682 c6b8d44 402a682 c6b8d44 402a682 c6b8d44 402a682 c6b8d44 402a682 c6b8d44 402a682 c6b8d44 402a682 c6b8d44 402a682 c6b8d44 402a682 c6b8d44 402a682 c6b8d44 402a682 c6b8d44 402a682 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 |
import os
import time
import hashlib
import json
from dotenv import load_dotenv
import streamlit as st
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.prompts import PromptTemplate
from langchain_together import Together
from langchain.memory import ConversationBufferWindowMemory
from langchain.chains import ConversationalRetrievalChain
from PyPDF2 import PdfReader, PdfWriter
from io import BytesIO
from reportlab.pdfgen import canvas
from reportlab.graphics.barcode import code128
from reportlab.lib.pagesizes import letter
from reportlab.lib.units import mm
load_dotenv()
st.set_page_config(page_title="LawGPT", layout="wide")
st.markdown("""
<style>
body, .stApp {
background-color: #0f172a;
color: #f8fafc;
font-family: 'Segoe UI', sans-serif;
}
.block-container {
padding: 1rem;
max-width: 100%;
}
.stButton > button {
background-color: #3b82f6;
color: white;
border: none;
border-radius: 8px;
padding: 0.75em 2em;
font-size: 1.1rem;
font-weight: 600;
transition: 0.3s;
width: 100%;
}
.stButton > button:hover {
background-color: #2563eb;
}
@media screen and (max-width: 768px) {
.role-buttons {
flex-direction: column;
gap: 1rem;
}
.logo-img {
width: 70% !important;
}
}
.role-buttons {
display: flex;
justify-content: center;
align-items: center;
gap: 2rem;
margin-top: 3rem;
flex-wrap: wrap;
}
.logo-center {
display: flex;
justify-content: center;
align-items: center;
margin-top: 1rem;
margin-bottom: 2rem;
}
.logo-img {
width: 25%;
max-width: 250px;
height: auto;
}
.judge-badge {
background-color: #991b1b;
color: white;
padding: 5px 10px;
border-radius: 12px;
font-weight: 600;
display: inline-block;
margin-bottom: 10px;
}
.judgment-card {
background-color: #1e293b;
border-radius: 8px;
padding: 20px;
margin-bottom: 20px;
border-left: 4px solid #991b1b;
}
</style>
""", unsafe_allow_html=True)
st.markdown("""
<div class="logo-center">
<img class="logo-img" src="https://github.com/harshitv804/LawGPT/assets/100853494/ecff5d3c-f105-4ba2-a93a-500282f0bf00" />
</div>
""", unsafe_allow_html=True)
if "role" not in st.session_state:
st.session_state.role = None
if "authenticated" not in st.session_state:
st.session_state.authenticated = False
if st.session_state.role is None:
st.markdown("<h2 style='text-align: center;'>Who are you?</h2>", unsafe_allow_html=True)
col1, col2, col3 = st.columns([1, 3, 1])
with col2:
col_a, col_b, col_c = st.columns(3)
with col_a:
if st.button("🧑 I am a Civilian"):
st.session_state.role = "civilian"
st.session_state.authenticated = True
st.rerun()
with col_b:
if st.button("⚖️ I am a Court Stakeholder"):
st.session_state.role = "stakeholder"
st.rerun()
with col_c:
if st.button("👨⚖️ I am a Judge"):
st.session_state.role = "judge"
st.rerun()
if (st.session_state.role == "stakeholder" or st.session_state.role == "judge") and not st.session_state.authenticated:
st.markdown(f"### 🔐 {'Judge' if st.session_state.role == 'judge' else 'Stakeholder'} Login")
username = st.text_input("Username")
password = st.text_input("Password", type="password")
if st.button("Login"):
if username == "admin" and password == "1234":
st.success("Login successful!")
st.session_state.authenticated = True
st.rerun()
else:
st.error("Invalid credentials.")
if st.session_state.role and (st.session_state.role == "civilian" or st.session_state.authenticated):
if st.button("🔙 Back to Home"):
st.session_state.role = None
st.session_state.authenticated = False
st.rerun()
tabs = ["📘 LawGPT"]
if st.session_state.role == "judge":
tabs.extend(["👨⚖️ Judge Console", "📜 Previous Judgments"])
elif st.session_state.role == "stakeholder":
tabs.extend(["📝 Document Signer", "🔍 Verify Document"])
selected_tab = st.tabs(tabs)
# Load embeddings and DB for all roles
embeddings = HuggingFaceEmbeddings(
model_name="nomic-ai/nomic-embed-text-v1",
model_kwargs={"trust_remote_code": True, "revision": "289f532e14dbbbd5a04753fa58739e9ba766f3c7"}
)
db = FAISS.load_local("ipc_vector_db", embeddings, allow_dangerous_deserialization=True)
db_retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 4})
# Common LLM setup
llm = Together(
model="mistralai/Mistral-7B-Instruct-v0.2",
temperature=0.5,
max_tokens=1024,
together_api_key=os.getenv("TOGETHER_API_KEY")
)
# LawGPT Tab for all roles
if "📘 LawGPT" in tabs:
with selected_tab[0]:
st.markdown("## 💬 Your Legal AI Lawyer")
st.markdown("### Ask any legal question related to the Indian Penal Code (IPC)")
st.markdown("Questions might be of types like: Suppose a 16 year old is drinking and driving, and hit a pedestrian on the road. What are the possible case laws imposed and give any one previous court decisions on the same.")
def reset_conversation():
st.session_state.messages = []
st.session_state.memory.clear()
if "messages" not in st.session_state:
st.session_state.messages = []
if "memory" not in st.session_state:
st.session_state.memory = ConversationBufferWindowMemory(
k=2, memory_key="chat_history", return_messages=True
)
prompt_template = """<s>[INST]You are a legal chatbot that answers questions about the Indian Penal Code (IPC).
Provide clear, concise, and accurate responses based on context and user's question.
Avoid extra details or assumptions. Focus only on legal information.
CONTEXT: {context}
CHAT HISTORY: {chat_history}
QUESTION: {question}
ANSWER:
</s>[INST]"""
prompt = PromptTemplate(
template=prompt_template,
input_variables=["context", "question", "chat_history"]
)
qa = ConversationalRetrievalChain.from_llm(
llm=llm,
memory=st.session_state.memory,
retriever=db_retriever,
combine_docs_chain_kwargs={
'prompt': prompt,
'document_variable_name': 'context'
}
)
chat_placeholder = st.empty()
with chat_placeholder.container():
for msg in st.session_state.messages:
with st.chat_message(msg["role"]):
st.write(msg["content"])
input_prompt = st.chat_input("Ask a legal question...")
if input_prompt:
with st.chat_message("user"):
st.write(input_prompt)
st.session_state.messages.append({"role": "user", "content": input_prompt})
with st.chat_message("assistant"):
with st.status("Thinking 💡", expanded=True):
result = qa.invoke(input=input_prompt)
message_placeholder = st.empty()
full_response = "⚠️ **_Note: Information provided may be inaccurate._**\n\n"
for chunk in result["answer"]:
full_response += chunk
time.sleep(0.02)
message_placeholder.markdown(full_response + " ▌")
message_placeholder.markdown(full_response)
st.session_state.messages.append({"role": "assistant", "content": result["answer"]})
st.button("🔄 Reset Chat", on_click=reset_conversation)
# Judge Console Tab
if st.session_state.role == "judge":
# Initialize judgment storage
if "judgments" not in st.session_state:
st.session_state.judgments = []
# Load existing judgments if file exists
try:
with open("judgments.json", "r") as f:
st.session_state.judgments = json.load(f)
except (FileNotFoundError, json.JSONDecodeError):
pass
with selected_tab[1]:
st.markdown("## 👨⚖️ Judge's Decision Console")
st.markdown("### Enter case details for analysis and judgment")
# Input fields for case details
st.subheader("Case Information")
case_number = st.text_input("Case Number/ID")
case_title = st.text_input("Case Title")
plaintiff = st.text_input("Plaintiff/Prosecution")
defendant = st.text_input("Defendant/Accused")
# Case facts and context
st.subheader("Case Details")
case_facts = st.text_area("Enter detailed facts of the case:", height=200)
# Get relevant laws/sections that apply
relevant_laws = st.text_area("Relevant IPC Sections (if known):",
placeholder="e.g. Section 302, Section 376, etc.")
col1, col2 = st.columns(2)
with col1:
case_type = st.selectbox("Case Type", [
"Criminal", "Civil", "Family", "Property", "Cyber Crime",
"Corporate", "Intellectual Property", "Other"
])
with col2:
case_priority = st.select_slider("Case Priority",
options=["Low", "Medium", "High", "Urgent"])
if st.button("Generate Judgment"):
if not case_facts:
st.error("Please enter the case facts to generate a judgment.")
else:
with st.status("Analyzing case and formulating judgment...", expanded=True):
# Create a prompt for legal judgment
judge_prompt_template = """<s>[INST]You are an experienced Indian judge making a legal judgment based on the Indian Penal Code (IPC).
Review the case details and provide a comprehensive legal judgment.
CASE NUMBER: {case_number}
CASE TITLE: {case_title}
PLAINTIFF/PROSECUTION: {plaintiff}
DEFENDANT/ACCUSED: {defendant}
CASE TYPE: {case_type}
CASE FACTS: {case_facts}
RELEVANT IPC SECTIONS: {relevant_laws}
Your judgment should follow this structure:
1. Summary of the case
2. Facts of the case
3. Legal issues involved
4. Analysis of applicable laws and precedents
5. Reasoning and findings
6. Final judgment and orders
7. Any remedies or penalties imposed
Be impartial, consider only facts and relevant laws, and make a fair judgment.
</s>[INST]"""
judge_prompt = PromptTemplate(
template=judge_prompt_template,
input_variables=["case_number", "case_title", "plaintiff", "defendant",
"case_type", "case_facts", "relevant_laws"]
)
# Format prompt with case details
formatted_prompt = judge_prompt.format(
case_number=case_number if case_number else "Unassigned",
case_title=case_title if case_title else "Unnamed Case",
plaintiff=plaintiff if plaintiff else "Unspecified",
defendant=defendant if defendant else "Unspecified",
case_type=case_type,
case_facts=case_facts,
relevant_laws=relevant_laws if relevant_laws else "To be determined"
)
# Generate judgment using LLM
judgment_result = llm.invoke(formatted_prompt)
# Save judgment to session state
timestamp = time.strftime("%Y-%m-%d %H:%M:%S")
judgment_data = {
"id": hashlib.md5(f"{case_title}{timestamp}".encode()).hexdigest()[:8],
"case_number": case_number if case_number else "Unassigned",
"case_title": case_title if case_title else "Unnamed Case",
"plaintiff": plaintiff,
"defendant": defendant,
"case_type": case_type,
"priority": case_priority,
"facts": case_facts,
"relevant_laws": relevant_laws,
"judgment": judgment_result,
"timestamp": timestamp
}
st.session_state.judgments.append(judgment_data)
# Save judgments to file
with open("judgments.json", "w") as f:
json.dump(st.session_state.judgments, f)
# Display the judgment
st.markdown("### Judgment Generated")
with st.container():
st.markdown(f"<div class='judgment-card'>", unsafe_allow_html=True)
st.markdown(f"<div class='judge-badge'>JUDGMENT #{judgment_data['id']}</div>", unsafe_allow_html=True)
st.markdown(f"**Case**: {judgment_data['case_title']}")
st.markdown(f"**Date**: {judgment_data['timestamp']}")
st.markdown("---")
st.markdown(judgment_data['judgment'])
st.markdown("</div>", unsafe_allow_html=True)
# Download judgment as PDF
if st.button("📥 Download Judgment as PDF"):
# Generate PDF with ReportLab
pdf_buffer = BytesIO()
c = canvas.Canvas(pdf_buffer, pagesize=letter)
width, height = letter
# Header
c.setFont("Helvetica-Bold", 16)
c.drawString(72, height - 72, f"JUDGMENT #{judgment_data['id']}")
# Case details
c.setFont("Helvetica-Bold", 12)
c.drawString(72, height - 100, f"Case: {judgment_data['case_title']}")
c.setFont("Helvetica", 10)
c.drawString(72, height - 115, f"Case Number: {judgment_data['case_number']}")
c.drawString(72, height - 130, f"Date: {judgment_data['timestamp']}")
c.drawString(72, height - 145, f"Plaintiff/Prosecution: {judgment_data['plaintiff']}")
c.drawString(72, height - 160, f"Defendant/Accused: {judgment_data['defendant']}")
c.drawString(72, height - 175, f"Case Type: {judgment_data['case_type']}")
# Line separator
c.line(72, height - 190, width - 72, height - 190)
# Format judgment text
judgment_text = judgment_data['judgment']
text_object = c.beginText(72, height - 210)
text_object.setFont("Times-Roman", 10)
# Wrap text to fit page
lines = []
for paragraph in judgment_text.split('\n\n'):
# Replace single newlines with spaces for proper wrapping
paragraph = paragraph.replace('\n', ' ')
# Simple word wrap
words = paragraph.split()
line = ''
for word in words:
if len(line + ' ' + word) <= 90: # character limit per line
line += ' ' + word if line else word
else:
lines.append(line)
line = word
if line:
lines.append(line)
# Add blank line between paragraphs
lines.append('')
# Add lines to text object with pagination
line_height = 12
lines_per_page = 50
current_line = 0
for line in lines:
if current_line >= lines_per_page:
c.drawText(text_object)
c.showPage()
text_object = c.beginText(72, height - 72)
text_object.setFont("Times-Roman", 10)
current_line = 0
text_object.textLine(line)
current_line += 1
c.drawText(text_object)
# Add footer with page numbers
c.saveState()
c.setFont("Helvetica", 8)
c.drawString(width/2 - 40, 30, f"Generated by LawGPT Judge")
c.restoreState()
# Final page with signature
c.showPage()
c.setFont("Helvetica-Bold", 12)
c.drawString(72, height - 100, "OFFICIAL JUDGMENT")
c.setFont("Helvetica", 10)
c.drawString(72, height - 130, f"Case #{judgment_data['id']} - {judgment_data['case_title']}")
c.drawString(72, height - 150, f"Date: {judgment_data['timestamp']}")
# Add barcode for authenticity
barcode = code128.Code128(f"JUDGMENT-{judgment_data['id']}", barHeight=10 * mm, barWidth=0.4)
barcode.drawOn(c, 72, 100)
# Add signature line
c.line(width - 200, 70, width - 72, 70)
c.drawString(width - 180, 60, "Judge's Signature")
c.save()
pdf_buffer.seek(0)
# Offer download
st.download_button(
label="📥 Download Generated PDF",
data=pdf_buffer,
file_name=f"judgment_{judgment_data['id']}_{judgment_data['case_title'].replace(' ', '_')}.pdf",
mime="application/pdf"
)
st.success("Judgment has been saved to the system.")
# Previous Judgments Tab
with selected_tab[2]:
st.markdown("## 📜 Previous Judgments")
st.markdown("### Review and search past judgments")
# Search and filter
search_term = st.text_input("Search judgments:", placeholder="Enter case title, number, plaintiff, etc.")
col1, col2 = st.columns(2)
with col1:
filter_type = st.multiselect("Filter by case type:",
options=["All"] + ["Criminal", "Civil", "Family", "Property", "Cyber Crime",
"Corporate", "Intellectual Property", "Other"],
default=["All"])
with col2:
sort_by = st.selectbox("Sort by:", options=["Most recent", "Oldest first", "Case title (A-Z)"])
# Display judgments based on filters
if len(st.session_state.judgments) == 0:
st.info("No judgments recorded yet. Use the Judge Console to create judgments.")
else:
# Filter judgments
filtered_judgments = st.session_state.judgments
# Apply search term filter
if search_term:
filtered_judgments = [j for j in filtered_judgments if
search_term.lower() in j['case_title'].lower() or
search_term.lower() in j['case_number'].lower() or
search_term.lower() in j['plaintiff'].lower() or
search_term.lower() in j['defendant'].lower() or
search_term.lower() in j.get('relevant_laws', '').lower()]
# Apply case type filter
if "All" not in filter_type:
filtered_judgments = [j for j in filtered_judgments if j['case_type'] in filter_type]
# Apply sorting
if sort_by == "Most recent":
filtered_judgments = sorted(filtered_judgments, key=lambda x: x['timestamp'], reverse=True)
elif sort_by == "Oldest first":
filtered_judgments = sorted(filtered_judgments, key=lambda x: x['timestamp'])
elif sort_by == "Case title (A-Z)":
filtered_judgments = sorted(filtered_judgments, key=lambda x: x['case_title'])
# Display judgments
for judgment in filtered_judgments:
with st.expander(f"**{judgment['case_title']}** - {judgment['timestamp']}"):
st.markdown(f"<div class='judge-badge'>JUDGMENT #{judgment['id']}</div>", unsafe_allow_html=True)
st.markdown(f"**Case Number**: {judgment['case_number']}")
st.markdown(f"**Plaintiff**: {judgment['plaintiff']}")
st.markdown(f"**Defendant**: {judgment['defendant']}")
st.markdown(f"**Case Type**: {judgment['case_type']} (Priority: {judgment['priority']})")
st.markdown("#### Case Facts")
st.markdown(judgment['facts'])
if judgment.get('relevant_laws'):
st.markdown("#### Relevant Laws Applied")
st.markdown(judgment['relevant_laws'])
st.markdown("#### Full Judgment")
st.markdown("---")
st.markdown(judgment['judgment'])
# Button to download individual judgment as PDF
if st.button(f"📥 Download PDF", key=f"download_{judgment['id']}"):
# Generate PDF with ReportLab
pdf_buffer = BytesIO()
c = canvas.Canvas(pdf_buffer, pagesize=letter)
width, height = letter
# Header
c.setFont("Helvetica-Bold", 16)
c.drawString(72, height - 72, f"JUDGMENT #{judgment['id']}")
# Case details
c.setFont("Helvetica-Bold", 12)
c.drawString(72, height - 100, f"Case: {judgment['case_title']}")
c.setFont("Helvetica", 10)
c.drawString(72, height - 115, f"Case Number: {judgment['case_number']}")
c.drawString(72, height - 130, f"Date: {judgment['timestamp']}")
c.drawString(72, height - 145, f"Plaintiff/Prosecution: {judgment['plaintiff']}")
c.drawString(72, height - 160, f"Defendant/Accused: {judgment['defendant']}")
c.drawString(72, height - 175, f"Case Type: {judgment['case_type']}")
# Line separator
c.line(72, height - 190, width - 72, height - 190)
# Format judgment text
judgment_text = judgment['judgment']
text_object = c.beginText(72, height - 210)
text_object.setFont("Times-Roman", 10)
# Wrap text to fit page
lines = []
for paragraph in judgment_text.split('\n\n'):
# Replace single newlines with spaces for proper wrapping
paragraph = paragraph.replace('\n', ' ')
# Simple word wrap
words = paragraph.split()
line = ''
for word in words:
if len(line + ' ' + word) <= 90: # character limit per line
line += ' ' + word if line else word
else:
lines.append(line)
line = word
if line:
lines.append(line)
# Add blank line between paragraphs
lines.append('')
# Add lines to text object with pagination
line_height = 12
lines_per_page = 50
current_line = 0
for line in lines:
if current_line >= lines_per_page:
c.drawText(text_object)
c.showPage()
text_object = c.beginText(72, height - 72)
text_object.setFont("Times-Roman", 10)
current_line = 0
text_object.textLine(line)
current_line += 1
c.drawText(text_object)
# Add footer with page numbers
c.saveState()
c.setFont("Helvetica", 8)
c.drawString(width/2 - 40, 30, f"Generated by LawGPT Judge")
c.restoreState()
# Final page with signature
c.showPage()
c.setFont("Helvetica-Bold", 12)
c.drawString(72, height - 100, "OFFICIAL JUDGMENT")
c.setFont("Helvetica", 10)
c.drawString(72, height - 130, f"Case #{judgment['id']} - {judgment['case_title']}")
c.drawString(72, height - 150, f"Date: {judgment['timestamp']}")
# Add barcode for authenticity
barcode = code128.Code128(f"JUDGMENT-{judgment['id']}", barHeight=10 * mm, barWidth=0.4)
barcode.drawOn(c, 72, 100)
# Add signature line
c.line(width - 200, 70, width - 72, 70)
c.drawString(width - 180, 60, "Judge's Signature")
c.save()
pdf_buffer.seek(0)
# Offer download
st.download_button(
label="📥 Download Generated PDF",
data=pdf_buffer,
file_name=f"judgment_{judgment['id']}_{judgment['case_title'].replace(' ', '_')}.pdf",
mime="application/pdf",
key=f"pdf_{judgment['id']}"
)
# Stakeholder tabs
if st.session_state.role == "stakeholder":
if "📝 Document Signer" in tabs:
with selected_tab[1]:
st.markdown("## 📝 Upload and Sign Document")
uploaded_file = st.file_uploader("Choose a file to sign", type=["pdf"])
signer_name = st.text_input("Enter your name (Signer):")
if uploaded_file and signer_name:
file_content = uploaded_file.read()
input_pdf = BytesIO(file_content)
output_pdf = BytesIO()
reader = PdfReader(input_pdf)
writer = PdfWriter()
for page in reader.pages:
page_width = float(page.mediabox.width)
page_height = float(page.mediabox.height)
packet = BytesIO()
can = canvas.Canvas(packet, pagesize=(page_width, page_height))
barcode = code128.Code128(signer_name, barHeight=10 * mm, barWidth=0.4)
barcode.drawOn(can, 50, 50)
can.setFont("Helvetica", 10)
can.drawString(50, 40, f"Signed by: {signer_name}")
can.save()
packet.seek(0)
overlay = PdfReader(packet).pages[0]
page.merge_page(overlay)
writer.add_page(page)
writer.write(output_pdf)
output_pdf.seek(0)
st.download_button("📅 Download Signed Document", output_pdf, file_name=f"signed_{uploaded_file.name}", mime="application/pdf")
if "🔍 Verify Document" in tabs:
with selected_tab[2]:
st.markdown("## 🔍 Verify Document Authentication")
st.markdown("Upload any document to verify its integrity and authenticity.")
verify_file = st.file_uploader("Upload PDF for verification", type=["pdf"], key="verify")
if verify_file:
content = verify_file.read()
try:
# Basic PDF validation
pdf = PdfReader(BytesIO(content))
# Extract text to look for signature markers
all_text = ""
for page in pdf.pages:
all_text += page.extract_text() or ""
# Check for digital signature information
has_signature_text = any(sig_text in all_text.lower() for sig_text in
["signed by:", "digital signature", "electronic signature"])
# Create document fingerprint/hash
doc_hash = hashlib.sha256(content).hexdigest()
# Calculate metadata integrity
metadata_valid = True
if pdf.metadata:
try:
# Check for suspicious metadata modifications
creation_date = pdf.metadata.get('/CreationDate', '')
mod_date = pdf.metadata.get('/ModDate', '')
if mod_date and creation_date:
metadata_valid = mod_date >= creation_date
except:
metadata_valid = False
# Check for content consistency
content_consistent = True
col1, col2 = st.columns(2)
with col1:
st.subheader("Document Analysis")
st.info(f"📄 Pages: {len(pdf.pages)}")
st.info(f"🔒 Contains signature markers: {'Yes' if has_signature_text else 'No'}")
# Display hash for document tracking
st.code(f"Document Hash: {doc_hash[:16]}...{doc_hash[-16:]}")
# Document size and characteristics
file_size = len(content) / 1024 # KB
st.info(f"📦 File size: {file_size:.2f} KB")
with col2:
st.subheader("Verification Results")
# Case 1: Document has signature markers
if has_signature_text:
if metadata_valid and content_consistent:
st.success("✅ Document Status: VERIFIED AUTHENTIC")
st.markdown("- ✓ Valid PDF structure")
st.markdown("- ✓ Signature information detected")
st.markdown("- ✓ No tampering indicators found")
st.markdown("- ✓ Metadata consistency verified")
else:
st.warning("⚠️ Document Status: POTENTIALLY MODIFIED")
st.markdown("- ✓ Valid PDF structure")
st.markdown("- ✓ Signature information found")
st.markdown("- ❌ Some integrity checks failed")
if not metadata_valid:
st.markdown("- ❌ Metadata inconsistencies detected")
# Display signature extraction if present
signature_line = next((line for line in all_text.split('\n') if "signed by:" in line.lower()), "")
if signature_line:
st.info(f"📝 {signature_line.strip()}")
# Case 2: Document without signatures
else:
if metadata_valid and content_consistent:
st.success("✅ Document Status: VALID DOCUMENT")
st.markdown("- ✓ Valid PDF structure")
st.markdown("- ✓ Content integrity verified")
st.markdown("- ✓ No tampering indicators found")
st.markdown("- ℹ️ No signature information found (this is not an error)")
else:
st.warning("⚠️ Document Status: POTENTIALLY MODIFIED")
st.markdown("- ✓ Valid PDF structure")
st.markdown("- ❌ Some integrity checks failed")
if not metadata_valid:
st.markdown("- ❌ Metadata inconsistencies detected")
# Advanced options
with st.expander("🔬 Advanced Verification Details"):
st.markdown("### Document Metadata")
if pdf.metadata:
for key, value in pdf.metadata.items():
if key and value and key not in ('/CreationDate', '/ModDate'):
st.text(f"{key}: {value}")
else:
st.text("No metadata available")
st.markdown("### Integrity Timeline")
st.text(f"Creation Date: {pdf.metadata.get('/CreationDate', 'Not available')}")
st.text(f"Last Modified: {pdf.metadata.get('/ModDate', 'Not available')}")
# Additional verification for content integrity
st.markdown("### Content Analysis")
fonts_used = set()
image_count = 0
for page in pdf.pages:
if "/Font" in page["/Resources"]:
for font in page["/Resources"]["/Font"]:
fonts_used.add(str(font))
if "/XObject" in page["/Resources"]:
for obj in page["/Resources"]["/XObject"]:
if "/Subtype" in page["/Resources"]["/XObject"][obj] and \
page["/Resources"]["/XObject"][obj]["/Subtype"] == "/Image":
image_count += 1
st.text(f"Fonts detected: {len(fonts_used)}")
st.text(f"Images detected: {image_count}")
except Exception as e:
st.error(f"❌ Document Status: INVALID OR CORRUPTED")
st.markdown(f"Error: Could not process the document properly. The file may be corrupted or not a valid PDF.")
st.markdown(f"Technical details: {str(e)}") |