File size: 21,441 Bytes
44dfa29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
from typing import Optional

import torch, math
import torch.nn
from einops import rearrange
from torch import nn
from functools import partial
from einops import rearrange



def attention(q, k, v, attn_mask, mode="torch"):
    q = q.transpose(1, 2)
    k = k.transpose(1, 2)
    v = v.transpose(1, 2)
    x = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask)
    x = rearrange(x, "b n s d -> b s (n d)")
    return x
    


class MLP(nn.Module):
    """MLP as used in Vision Transformer, MLP-Mixer and related networks"""

    def __init__(
        self,
        in_channels,
        hidden_channels=None,
        out_features=None,
        act_layer=nn.GELU,
        norm_layer=None,
        bias=True,
        drop=0.0,
        use_conv=False,
        device=None,
        dtype=None,
    ):
        super().__init__()
        out_features = out_features or in_channels
        hidden_channels = hidden_channels or in_channels
        bias = (bias, bias)
        drop_probs = (drop, drop)
        linear_layer = partial(nn.Conv2d, kernel_size=1) if use_conv else nn.Linear

        self.fc1 = linear_layer(
            in_channels, hidden_channels, bias=bias[0], device=device, dtype=dtype
        )
        self.act = act_layer()
        self.drop1 = nn.Dropout(drop_probs[0])
        self.norm = (
            norm_layer(hidden_channels, device=device, dtype=dtype)
            if norm_layer is not None
            else nn.Identity()
        )
        self.fc2 = linear_layer(
            hidden_channels, out_features, bias=bias[1], device=device, dtype=dtype
        )
        self.drop2 = nn.Dropout(drop_probs[1])

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop1(x)
        x = self.norm(x)
        x = self.fc2(x)
        x = self.drop2(x)
        return x
    
    
class TextProjection(nn.Module):
    """
    Projects text embeddings. Also handles dropout for classifier-free guidance.

    Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py
    """

    def __init__(self, in_channels, hidden_size, act_layer, dtype=None, device=None):
        factory_kwargs = {"dtype": dtype, "device": device}
        super().__init__()
        self.linear_1 = nn.Linear(
            in_features=in_channels,
            out_features=hidden_size,
            bias=True,
            **factory_kwargs,
        )
        self.act_1 = act_layer()
        self.linear_2 = nn.Linear(
            in_features=hidden_size,
            out_features=hidden_size,
            bias=True,
            **factory_kwargs,
        )

    def forward(self, caption):
        hidden_states = self.linear_1(caption)
        hidden_states = self.act_1(hidden_states)
        hidden_states = self.linear_2(hidden_states)
        return hidden_states
    
    
class TimestepEmbedder(nn.Module):
    """
    Embeds scalar timesteps into vector representations.
    """

    def __init__(
        self,
        hidden_size,
        act_layer,
        frequency_embedding_size=256,
        max_period=10000,
        out_size=None,
        dtype=None,
        device=None,
    ):
        factory_kwargs = {"dtype": dtype, "device": device}
        super().__init__()
        self.frequency_embedding_size = frequency_embedding_size
        self.max_period = max_period
        if out_size is None:
            out_size = hidden_size

        self.mlp = nn.Sequential(
            nn.Linear(
                frequency_embedding_size, hidden_size, bias=True, **factory_kwargs
            ),
            act_layer(),
            nn.Linear(hidden_size, out_size, bias=True, **factory_kwargs),
        )
        nn.init.normal_(self.mlp[0].weight, std=0.02)  # type: ignore
        nn.init.normal_(self.mlp[2].weight, std=0.02)  # type: ignore

    @staticmethod
    def timestep_embedding(t, dim, max_period=10000):
        """
        Create sinusoidal timestep embeddings.

        Args:
            t (torch.Tensor): a 1-D Tensor of N indices, one per batch element. These may be fractional.
            dim (int): the dimension of the output.
            max_period (int): controls the minimum frequency of the embeddings.

        Returns:
            embedding (torch.Tensor): An (N, D) Tensor of positional embeddings.

        .. ref_link: https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
        """
        half = dim // 2
        freqs = torch.exp(
            -math.log(max_period)
            * torch.arange(start=0, end=half, dtype=torch.float32)
            / half
        ).to(device=t.device)
        args = t[:, None].float() * freqs[None]
        embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
        if dim % 2:
            embedding = torch.cat(
                [embedding, torch.zeros_like(embedding[:, :1])], dim=-1
            )
        return embedding

    def forward(self, t):
        t_freq = self.timestep_embedding(
            t, self.frequency_embedding_size, self.max_period
        ).type(self.mlp[0].weight.dtype)  # type: ignore
        t_emb = self.mlp(t_freq)
        return t_emb
    
    
def apply_gate(x, gate=None, tanh=False):
    """AI is creating summary for apply_gate

    Args:
        x (torch.Tensor): input tensor.
        gate (torch.Tensor, optional): gate tensor. Defaults to None.
        tanh (bool, optional): whether to use tanh function. Defaults to False.

    Returns:
        torch.Tensor: the output tensor after apply gate.
    """
    if gate is None:
        return x
    if tanh:
        return x * gate.unsqueeze(1).tanh()
    else:
        return x * gate.unsqueeze(1)


class RMSNorm(nn.Module):
    def __init__(
        self,
        dim: int,
        elementwise_affine=True,
        eps: float = 1e-6,
        device=None,
        dtype=None,
    ):
        """
        Initialize the RMSNorm normalization layer.

        Args:
            dim (int): The dimension of the input tensor.
            eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.

        Attributes:
            eps (float): A small value added to the denominator for numerical stability.
            weight (nn.Parameter): Learnable scaling parameter.

        """
        factory_kwargs = {"device": device, "dtype": dtype}
        super().__init__()
        self.eps = eps
        if elementwise_affine:
            self.weight = nn.Parameter(torch.ones(dim, **factory_kwargs))

    def _norm(self, x):
        """
        Apply the RMSNorm normalization to the input tensor.

        Args:
            x (torch.Tensor): The input tensor.

        Returns:
            torch.Tensor: The normalized tensor.

        """
        return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)

    def forward(self, x):
        """
        Forward pass through the RMSNorm layer.

        Args:
            x (torch.Tensor): The input tensor.

        Returns:
            torch.Tensor: The output tensor after applying RMSNorm.

        """
        output = self._norm(x.float()).type_as(x)
        if hasattr(self, "weight"):
            output = output * self.weight
        return output


def get_norm_layer(norm_layer):
    """
    Get the normalization layer.

    Args:
        norm_layer (str): The type of normalization layer.

    Returns:
        norm_layer (nn.Module): The normalization layer.
    """
    if norm_layer == "layer":
        return nn.LayerNorm
    elif norm_layer == "rms":
        return RMSNorm
    else:
        raise NotImplementedError(f"Norm layer {norm_layer} is not implemented")


def get_activation_layer(act_type):
    """get activation layer

    Args:
        act_type (str): the activation type

    Returns:
        torch.nn.functional: the activation layer
    """
    if act_type == "gelu":
        return lambda: nn.GELU()
    elif act_type == "gelu_tanh":
        return lambda: nn.GELU(approximate="tanh")
    elif act_type == "relu":
        return nn.ReLU
    elif act_type == "silu":
        return nn.SiLU
    else:
        raise ValueError(f"Unknown activation type: {act_type}")

class IndividualTokenRefinerBlock(torch.nn.Module):
    def __init__(
        self,
        hidden_size,
        heads_num,
        mlp_width_ratio: str = 4.0,
        mlp_drop_rate: float = 0.0,
        act_type: str = "silu",
        qk_norm: bool = False,
        qk_norm_type: str = "layer",
        qkv_bias: bool = True,
        need_CA: bool = False,
        dtype: Optional[torch.dtype] = None,
        device: Optional[torch.device] = None,
    ):
        factory_kwargs = {"device": device, "dtype": dtype}
        super().__init__()
        self.need_CA = need_CA
        self.heads_num = heads_num
        head_dim = hidden_size // heads_num
        mlp_hidden_dim = int(hidden_size * mlp_width_ratio)

        self.norm1 = nn.LayerNorm(
            hidden_size, elementwise_affine=True, eps=1e-6, **factory_kwargs
        )
        self.self_attn_qkv = nn.Linear(
            hidden_size, hidden_size * 3, bias=qkv_bias, **factory_kwargs
        )
        qk_norm_layer = get_norm_layer(qk_norm_type)
        self.self_attn_q_norm = (
            qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
            if qk_norm
            else nn.Identity()
        )
        self.self_attn_k_norm = (
            qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
            if qk_norm
            else nn.Identity()
        )
        self.self_attn_proj = nn.Linear(
            hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs
        )

        self.norm2 = nn.LayerNorm(
            hidden_size, elementwise_affine=True, eps=1e-6, **factory_kwargs
        )
        act_layer = get_activation_layer(act_type)
        self.mlp = MLP(
            in_channels=hidden_size,
            hidden_channels=mlp_hidden_dim,
            act_layer=act_layer,
            drop=mlp_drop_rate,
            **factory_kwargs,
        )

        self.adaLN_modulation = nn.Sequential(
            act_layer(),
            nn.Linear(hidden_size, 2 * hidden_size, bias=True, **factory_kwargs),
        )

        if self.need_CA:
            self.cross_attnblock=CrossAttnBlock(hidden_size=hidden_size,
                        heads_num=heads_num,
                        mlp_width_ratio=mlp_width_ratio,
                        mlp_drop_rate=mlp_drop_rate,
                        act_type=act_type,
                        qk_norm=qk_norm,
                        qk_norm_type=qk_norm_type,
                        qkv_bias=qkv_bias,
                        **factory_kwargs,)
        # Zero-initialize the modulation
        nn.init.zeros_(self.adaLN_modulation[1].weight)
        nn.init.zeros_(self.adaLN_modulation[1].bias)

    def forward(
        self,
        x: torch.Tensor,
        c: torch.Tensor,  # timestep_aware_representations + context_aware_representations
        attn_mask: torch.Tensor = None,
        y: torch.Tensor = None,
    ):
        gate_msa, gate_mlp = self.adaLN_modulation(c).chunk(2, dim=1)

        norm_x = self.norm1(x)
        qkv = self.self_attn_qkv(norm_x)
        q, k, v = rearrange(qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num)
        # Apply QK-Norm if needed
        q = self.self_attn_q_norm(q).to(v)
        k = self.self_attn_k_norm(k).to(v)

        # Self-Attention
        attn = attention(q, k, v, mode="torch", attn_mask=attn_mask)

        x = x + apply_gate(self.self_attn_proj(attn), gate_msa)
        
        if self.need_CA:
            x = self.cross_attnblock(x, c, attn_mask, y)

        # FFN Layer
        x = x + apply_gate(self.mlp(self.norm2(x)), gate_mlp)

        return x




class CrossAttnBlock(torch.nn.Module):
    def __init__(
        self,
        hidden_size,
        heads_num,
        mlp_width_ratio: str = 4.0,
        mlp_drop_rate: float = 0.0,
        act_type: str = "silu",
        qk_norm: bool = False,
        qk_norm_type: str = "layer",
        qkv_bias: bool = True,
        dtype: Optional[torch.dtype] = None,
        device: Optional[torch.device] = None,
    ):
        factory_kwargs = {"device": device, "dtype": dtype}
        super().__init__()
        self.heads_num = heads_num
        head_dim = hidden_size // heads_num

        self.norm1 = nn.LayerNorm(
            hidden_size, elementwise_affine=True, eps=1e-6, **factory_kwargs
        )
        self.norm1_2 = nn.LayerNorm(
            hidden_size, elementwise_affine=True, eps=1e-6, **factory_kwargs
        )
        self.self_attn_q = nn.Linear(
            hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs
        )
        self.self_attn_kv = nn.Linear(
            hidden_size, hidden_size*2, bias=qkv_bias, **factory_kwargs
        )
        qk_norm_layer = get_norm_layer(qk_norm_type)
        self.self_attn_q_norm = (
            qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
            if qk_norm
            else nn.Identity()
        )
        self.self_attn_k_norm = (
            qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
            if qk_norm
            else nn.Identity()
        )
        self.self_attn_proj = nn.Linear(
            hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs
        )

        self.norm2 = nn.LayerNorm(
            hidden_size, elementwise_affine=True, eps=1e-6, **factory_kwargs
        )
        act_layer = get_activation_layer(act_type)

        self.adaLN_modulation = nn.Sequential(
            act_layer(),
            nn.Linear(hidden_size, 2 * hidden_size, bias=True, **factory_kwargs),
        )
        # Zero-initialize the modulation
        nn.init.zeros_(self.adaLN_modulation[1].weight)
        nn.init.zeros_(self.adaLN_modulation[1].bias)

    def forward(
        self,
        x: torch.Tensor,
        c: torch.Tensor,  # timestep_aware_representations + context_aware_representations
        attn_mask: torch.Tensor = None,
        y: torch.Tensor=None,
        
    ):
        gate_msa, gate_mlp = self.adaLN_modulation(c).chunk(2, dim=1)

        norm_x = self.norm1(x)
        norm_y = self.norm1_2(y)
        q = self.self_attn_q(norm_x)
        q = rearrange(q, "B L (H D) -> B L H D",  H=self.heads_num)
        kv = self.self_attn_kv(norm_y)
        k, v = rearrange(kv, "B L (K H D) -> K B L H D", K=2, H=self.heads_num)
        # Apply QK-Norm if needed
        q = self.self_attn_q_norm(q).to(v)
        k = self.self_attn_k_norm(k).to(v)

        # Self-Attention
        attn = attention(q, k, v, mode="torch", attn_mask=attn_mask)

        x = x + apply_gate(self.self_attn_proj(attn), gate_msa)

        return x



class IndividualTokenRefiner(torch.nn.Module):
    def __init__(
        self,
        hidden_size,
        heads_num,
        depth,
        mlp_width_ratio: float = 4.0,
        mlp_drop_rate: float = 0.0,
        act_type: str = "silu",
        qk_norm: bool = False,
        qk_norm_type: str = "layer",
        qkv_bias: bool = True,
        need_CA:bool=False,
        dtype: Optional[torch.dtype] = None,
        device: Optional[torch.device] = None,
    ):  
        
        factory_kwargs = {"device": device, "dtype": dtype}
        super().__init__()
        self.need_CA = need_CA
        self.blocks = nn.ModuleList(
            [
                IndividualTokenRefinerBlock(
                    hidden_size=hidden_size,
                    heads_num=heads_num,
                    mlp_width_ratio=mlp_width_ratio,
                    mlp_drop_rate=mlp_drop_rate,
                    act_type=act_type,
                    qk_norm=qk_norm,
                    qk_norm_type=qk_norm_type,
                    qkv_bias=qkv_bias,
                    need_CA=self.need_CA,
                    **factory_kwargs,
                )
                for _ in range(depth)
            ]
        )


    def forward(
        self,
        x: torch.Tensor,
        c: torch.LongTensor,
        mask: Optional[torch.Tensor] = None,
        y:torch.Tensor=None,
    ):
        self_attn_mask = None
        if mask is not None:
            batch_size = mask.shape[0]
            seq_len = mask.shape[1]
            mask = mask.to(x.device)
            # batch_size x 1 x seq_len x seq_len
            self_attn_mask_1 = mask.view(batch_size, 1, 1, seq_len).repeat(
                1, 1, seq_len, 1
            )
            # batch_size x 1 x seq_len x seq_len
            self_attn_mask_2 = self_attn_mask_1.transpose(2, 3)
            # batch_size x 1 x seq_len x seq_len, 1 for broadcasting of heads_num
            self_attn_mask = (self_attn_mask_1 & self_attn_mask_2).bool()
            # avoids self-attention weight being NaN for padding tokens
            self_attn_mask[:, :, :, 0] = True
        
        
        for block in self.blocks:
            x = block(x, c, self_attn_mask,y)

        return x


class SingleTokenRefiner(torch.nn.Module):
    """
    A single token refiner block for llm text embedding refine.
    """
    def __init__(
        self,
        in_channels,
        hidden_size,
        heads_num,
        depth,
        mlp_width_ratio: float = 4.0,
        mlp_drop_rate: float = 0.0,
        act_type: str = "silu",
        qk_norm: bool = False,
        qk_norm_type: str = "layer",
        qkv_bias: bool = True,
        need_CA:bool=False,
        attn_mode: str = "torch",
        dtype: Optional[torch.dtype] = None,
        device: Optional[torch.device] = None,
    ):
        factory_kwargs = {"device": device, "dtype": dtype}
        super().__init__()
        self.attn_mode = attn_mode
        self.need_CA = need_CA
        assert self.attn_mode == "torch", "Only support 'torch' mode for token refiner."

        self.input_embedder = nn.Linear(
            in_channels, hidden_size, bias=True, **factory_kwargs
        )
        if self.need_CA:
            self.input_embedder_CA = nn.Linear(
            in_channels, hidden_size, bias=True, **factory_kwargs
        )

        act_layer = get_activation_layer(act_type)
        # Build timestep embedding layer
        self.t_embedder = TimestepEmbedder(hidden_size, act_layer, **factory_kwargs)
        # Build context embedding layer
        self.c_embedder = TextProjection(
            in_channels, hidden_size, act_layer, **factory_kwargs
        )

        self.individual_token_refiner = IndividualTokenRefiner(
            hidden_size=hidden_size,
            heads_num=heads_num,
            depth=depth,
            mlp_width_ratio=mlp_width_ratio,
            mlp_drop_rate=mlp_drop_rate,
            act_type=act_type,
            qk_norm=qk_norm,
            qk_norm_type=qk_norm_type,
            qkv_bias=qkv_bias,
            need_CA=need_CA,
            **factory_kwargs,
        )

    def forward(
        self,
        x: torch.Tensor,
        t: torch.LongTensor,
        mask: Optional[torch.LongTensor] = None,
        y: torch.LongTensor=None,
    ):
        timestep_aware_representations = self.t_embedder(t)

        if mask is None:
            context_aware_representations = x.mean(dim=1)
        else:
            mask_float = mask.unsqueeze(-1)  # [b, s1, 1]
            context_aware_representations = (x * mask_float).sum(
                dim=1
            ) / mask_float.sum(dim=1)
        context_aware_representations = self.c_embedder(context_aware_representations)
        c = timestep_aware_representations + context_aware_representations

        x = self.input_embedder(x)
        if self.need_CA:
            y = self.input_embedder_CA(y)
            x = self.individual_token_refiner(x, c, mask, y)
        else:
            x = self.individual_token_refiner(x, c, mask)

        return x


class Qwen2Connector(torch.nn.Module):
    def __init__(
        self,
        # biclip_dim=1024,
        in_channels=3584,
        hidden_size=4096,
        heads_num=32,
        depth=2,
        need_CA=False,
        device=None,
        dtype=torch.bfloat16,
    ):
        super().__init__()
        factory_kwargs = {"device": device, "dtype":dtype}

        self.S =SingleTokenRefiner(in_channels=in_channels,hidden_size=hidden_size,heads_num=heads_num,depth=depth,need_CA=need_CA,**factory_kwargs)
        self.global_proj_out=nn.Linear(in_channels,768)

        self.scale_factor = nn.Parameter(torch.zeros(1))
        with torch.no_grad():
            self.scale_factor.data += -(1 - 0.09)

    def forward(self, x,t,mask):
        mask_float = mask.unsqueeze(-1)  # [b, s1, 1]
        x_mean = (x * mask_float).sum(
                dim=1
            ) / mask_float.sum(dim=1) * (1 + self.scale_factor)

        global_out=self.global_proj_out(x_mean)
        encoder_hidden_states = self.S(x,t,mask)
        return encoder_hidden_states,global_out
    
    @staticmethod
    def state_dict_converter():
        return Qwen2ConnectorStateDictConverter()
    
    
class Qwen2ConnectorStateDictConverter:
    def __init__(self):
        pass

    def from_diffusers(self, state_dict):
        return state_dict
    
    def from_civitai(self, state_dict):
        state_dict_ = {}
        for name, param in state_dict.items():
            if name.startswith("connector."):
                name_ = name[len("connector."):]
                state_dict_[name_] = param
        return state_dict_