Kvikontent's picture
Update app.py
f1af9e9 verified
raw
history blame
1.84 kB
import gradio as gr
import requests
import qrcode
import io
from PIL import Image, ImageDraw
import os
# Get the Hugging Face API token from the environment variable
hf_token = os.environ.get("hf_token")
# Function to generate a QR code
def generate_qr_image(url, image_size):
qr = qrcode.QRCode(
version=1,
error_correction=qrcode.constants.ERROR_CORRECT_L,
box_size=10,
border=4,
)
qr.add_data(url)
qr.make(fit=True)
qr_img = qr.make_image(fill_color="black", back_color="white")
qr_img = qr_img.convert("RGBA")
qr_img = qr_img.resize(image_size)
return qr_img
# Function to query the image from the Hugging Face API
def query_image(text):
API_URL = "https://api-inference.huggingface.co/models/goofyai/3d_render_style_xl"
headers = {"Authorization": f"Bearer {hf_token}"}
response = requests.post(API_URL, headers=headers, json={"inputs": text})
return response.content
# Gradio app function
def generate_image(url, text):
# Generate image from Hugging Face API
image_bytes = query_image(text)
api_image = Image.open(io.BytesIO(image_bytes)).convert("RGBA")
# Generate QR code image
qr_image = generate_qr_image(url, api_image.size)
# Blend the API image and QR code
final_image = Image.alpha_composite(api_image, qr_image)
return final_image
# Inputs and outputs for Gradio interface
inputs = [
gr.Textbox(lines=1, label="URL"),
gr.Textbox(lines=2, label="Prompt for Image"),
]
output = gr.Image(type="pil", label="Generated Image")
# Gradio app interface
gr.Interface(fn=generate_image, inputs=inputs, outputs=output, title="QR Code Image Generator", description="Generate an image with a QR code linked to the input URL and an image from the Hugging Face API", theme="soft").launch()