from typing import List from data.dataloader import build_dataloader # from methods.elasticdnn.api.online_model import ElasticDNN_OnlineModel from methods.elasticdnn.api.online_model_v2 import ElasticDNN_OnlineModel import torch import sys from torch import nn from methods.elasticdnn.api.model import ElasticDNN_OfflineSegFMModel, ElasticDNN_OfflineSegMDModel from methods.elasticdnn.api.algs.md_pretraining_wo_fbs import ElasticDNN_MDPretrainingWoFBSAlg from methods.elasticdnn.model.base import ElasticDNNUtil from methods.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util from methods.elasticdnn.pipeline.offline.fm_to_md.vit import FM_to_MD_ViT_Util from methods.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util from methods.elasticdnn.pipeline.offline.fm_lora.vit import FMLoRA_ViT_Util from methods.elasticdnn.model.vit import ElasticViTUtil from utils.common.file import ensure_dir from utils.dl.common.model import LayerActivation, get_module, get_parameter from utils.common.exp import save_models_dict_for_init, get_res_save_dir from data import build_scenario from utils.dl.common.loss import CrossEntropyLossSoft import torch.nn.functional as F from utils.dl.common.env import create_tbwriter import os from utils.common.log import logger from utils.common.data_record import write_json # from methods.shot.shot import OnlineShotModel from methods.gem.gem_el_vilt import GEMAlg import tqdm from methods.feat_align.mmd import mmd_rbf from experiments.utils.elasticfm_cl import init_online_model, elasticfm_cl from data import build_cl_scenario, build_scenario device = 'cuda' app_name = 'vqa' sd_sparsity = 0.8 settings = { 'involve_fm': True } target_datasets = ['VQAv2_split1_c_gaussian_noise', 'VQAv2_split1_c_shot_noise', 'VQAv2_split1_c_impulse_noise', 'VQAv2_split1_c_defocus_blur', 'VQAv2_split1_c_glass_blur', 'VQAv2_split1_c_motion_blur', 'VQAv2_split1_c_zoom_blur', 'VQAv2_split1_c_snow', 'VQAv2_split1_c_frost', 'VQAv2_split1_c_fog', 'VQAv2_split1_c_brightness', 'VQAv2_split1_c_contrast', 'VQAv2_split1_c_elastic_transform', 'VQAv2_split1_c_pixelate', 'VQAv2_split1_c_jpeg_compression', 'VQAv2_split1_c_speckle_noise', 'VQAv2_split1_c_gaussian_blur', 'VQAv2_split1_c_spatter', 'VQAv2_split1_c_saturate'] * 2 target_datasets = target_datasets[0: 30] assert len(target_datasets) == 30 scenario = build_scenario( source_datasets_name=['VQAv2_split1'], target_datasets_order=target_datasets, da_mode='close_set', data_dirs={ k: '/data/zql/datasets/vqav2vv' for k in ['VQAv2_split1', 'VQAv2_split1_c_gaussian_noise', 'VQAv2_split1_c_shot_noise', 'VQAv2_split1_c_impulse_noise', 'VQAv2_split1_c_defocus_blur', 'VQAv2_split1_c_glass_blur', 'VQAv2_split1_c_motion_blur', 'VQAv2_split1_c_zoom_blur', 'VQAv2_split1_c_snow', 'VQAv2_split1_c_frost', 'VQAv2_split1_c_fog', 'VQAv2_split1_c_brightness', 'VQAv2_split1_c_contrast', 'VQAv2_split1_c_elastic_transform', 'VQAv2_split1_c_pixelate', 'VQAv2_split1_c_jpeg_compression', 'VQAv2_split1_c_speckle_noise', 'VQAv2_split1_c_gaussian_blur', 'VQAv2_split1_c_spatter', 'VQAv2_split1_c_saturate'] }, ) scenario = build_cl_scenario( da_scenario=scenario, target_datasets_name=['VQAv2_split2'], num_classes_per_task=20, max_num_tasks=30, data_dirs={ 'VQAv2_split2': '/data/zql/datasets/vqav2vv' # NOTE: trick, see vqav2.py (the implementation of VQAv2 dataset) }, sanity_check=True ) from experiments.elasticdnn.vilt.online.vqa_cl.model import ElasticDNN_VQAOnlineModel elasticfm_model = ElasticDNN_VQAOnlineModel('cls', init_online_model( # 'experiments/elasticdnn/vit_b_16/offline/fm_to_md/results/cls_md_index.py/20230529/star_999997-154037-only_prune_mlp/models/fm_best.pt', # 'experiments/elasticdnn/vit_b_16/offline/fm_to_md/results/cls_md_index.py/20230529/star_999997-154037-only_prune_mlp/models/md_best.pt', 'experiments/elasticdnn/vilt/offline/fm_to_md/vqa/results/vqa_w_fbs_index.py/20230731/999999-095720-trial/models/fm_best.pt', 'experiments/elasticdnn/vilt/offline/fm_to_md/vqa/results/vqa_w_fbs_index.py/20230731/999999-095720-trial/models/md_best.pt', 'cls', __file__ ), device, { 'md_to_fm_alpha': 0.1, 'fm_to_md_alpha': 0.001 }) da_alg = GEMAlg from experiments.elasticdnn.vilt.online.vqa_cl.model import VQAOnlineGEMModel da_model = VQAOnlineGEMModel da_alg_hyp = { 'train_batch_size': 64, 'val_batch_size': 256, 'num_workers': 0, 'optimizer': 'AdamW', 'optimizer_args': {'lr': 3e-3, 'betas': [0.9, 0.999], 'weight_decay': 0.0}, 'scheduler': '', 'scheduler_args': {}, 'num_iters': 100 * 8, 'val_freq': 20 * 8, # 'num_iters': 1, # 'val_freq': 1, 'n_memories': 64, 'n_inputs': 3 * 224 * 224, 'margin': 0.5, 'num_my_iters': 1, 'sd_sparsity': sd_sparsity, } elasticfm_cl( [app_name], [scenario], [elasticfm_model], [da_alg], [da_alg_hyp], [da_model], device, settings, __file__, sys.argv[1] )