from typing import List from data.dataloader import build_dataloader # from methods.elasticdnn.api.online_model import ElasticDNN_OnlineModel from new_impl.cv.elasticdnn.api.online_model_v2 import ElasticDNN_OnlineModel import torch import sys from torch import nn from new_impl.cv.elasticdnn.api.model import ElasticDNN_OfflineSegFMModel, ElasticDNN_OfflineSegMDModel from new_impl.cv.elasticdnn.api.algs.md_pretraining_wo_fbs import ElasticDNN_MDPretrainingWoFBSAlg from new_impl.cv.elasticdnn.model.base import ElasticDNNUtil from new_impl.cv.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util from new_impl.cv.elasticdnn.pipeline.offline.fm_to_md.vit import FM_to_MD_ViT_Util from new_impl.cv.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util from new_impl.cv.elasticdnn.pipeline.offline.fm_lora.vit import FMLoRA_ViT_Util from new_impl.cv.elasticdnn.model.vit import ElasticViTUtil from utils.common.file import ensure_dir from utils.dl.common.model import LayerActivation, get_module, get_parameter from utils.common.exp import save_models_dict_for_init, get_res_save_dir from data import build_scenario from utils.dl.common.loss import CrossEntropyLossSoft import torch.nn.functional as F from utils.dl.common.env import create_tbwriter import os from utils.common.log import logger from utils.common.data_record import write_json # from methods.shot.shot import OnlineShotModel from new_impl.cv.feat_align.main import FeatAlignAlg import tqdm from new_impl.cv.feat_align.mmd import mmd_rbf from new_impl.cv.utils.elasticfm_da import init_online_model, elasticfm_da os.environ['TOKENIZERS_PARALLELISM'] = 'false' torch.cuda.set_device(1) device = 'cuda' app_name = 'vqa' sd_sparsity = 0.8 settings = { 'involve_fm': True } target_datasets = ['VQAv2_split1_c_gaussian_noise', 'VQAv2_split1_c_shot_noise', 'VQAv2_split1_c_impulse_noise', 'VQAv2_split1_c_defocus_blur', 'VQAv2_split1_c_glass_blur', 'VQAv2_split1_c_motion_blur', 'VQAv2_split1_c_zoom_blur', 'VQAv2_split1_c_snow', 'VQAv2_split1_c_frost', 'VQAv2_split1_c_fog', 'VQAv2_split1_c_brightness', 'VQAv2_split1_c_contrast', 'VQAv2_split1_c_elastic_transform', 'VQAv2_split1_c_pixelate', 'VQAv2_split1_c_jpeg_compression', 'VQAv2_split1_c_speckle_noise', 'VQAv2_split1_c_gaussian_blur', 'VQAv2_split1_c_spatter', 'VQAv2_split1_c_saturate'] * 2 target_datasets = target_datasets[0: 30] assert len(target_datasets) == 30 scenario = build_scenario( source_datasets_name=['VQA_split1'], target_datasets_order=['VQA_split1_c'], da_mode='close_set', data_dirs={ k: '/data/zql/datasets/vqav2' for k in ['VQA_split1', 'VQA_split1_c'] }, ) from blip import ElasticDNN_VQAOnlineModel elasticfm_model = ElasticDNN_VQAOnlineModel('vqa', init_online_model( '', '', 'vqa', __file__ ), device, { 'md_to_fm_alpha': 0.2, 'fm_to_md_alpha': 0.2 }) da_alg = FeatAlignAlg from blip import VQAOnlineFeatAlignModel da_model = VQAOnlineFeatAlignModel da_alg_hyp = { 'train_batch_size': 64, 'val_batch_size': 256, 'num_workers': 0, 'optimizer': 'AdamW', 'optimizer_args': {'lr': 1e-6, 'betas': [0.9, 0.999], 'weight_decay': 0.01}, 'scheduler': '', 'scheduler_args': {}, 'num_iters': 100, 'val_freq': 20, 'feat_align_loss_weight': 1.0, 'sd_sparsity': 0.7 } elasticfm_da( [app_name], [scenario], [elasticfm_model], [da_alg], [da_alg_hyp], [da_model], device, settings, __file__, sys.argv[0] )