Spaces:
Runtime error
Runtime error
File size: 12,288 Bytes
f96f677 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
import inspect
import math
from typing import Callable, List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
from torch import nn
from diffusers.image_processor import IPAdapterMaskProcessor
from diffusers.utils import deprecate, logging
from diffusers.utils.import_utils import is_torch_npu_available, is_xformers_available
from diffusers.utils.torch_utils import is_torch_version, maybe_allow_in_graph
from diffusers.models.attention import Attention
from diffusers.models.embeddings import Timesteps, TimestepEmbedding, PixArtAlphaTextProjection
class CombinedTimestepGuidanceTextProjEmbeddings(nn.Module):
def __init__(self, embedding_dim, pooled_projection_dim):
super().__init__()
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
self.guidance_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu")
def forward(self, timestep, guidance, pooled_projection):
timesteps_proj = self.time_proj(timestep)
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype)) # (N, D)
if (guidance >= 0).all():
guidance_proj = self.time_proj(guidance)
guidance_emb = self.guidance_embedder(guidance_proj.to(dtype=pooled_projection.dtype)) # (N, D)
time_guidance_emb = timesteps_emb + guidance_emb
pooled_projections = self.text_embedder(pooled_projection)
conditioning = time_guidance_emb + pooled_projections
else:
pooled_projections = self.text_embedder(pooled_projection)
conditioning = timesteps_emb + pooled_projections
return conditioning
def apply_rotary_emb(
x: torch.Tensor,
freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
use_real: bool = True,
use_real_unbind_dim: int = -1,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings
to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are
reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting
tensors contain rotary embeddings and are returned as real tensors.
Args:
x (`torch.Tensor`):
Query or key tensor to apply rotary embeddings. [B, H, S, D] xk (torch.Tensor): Key tensor to apply
freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],)
Returns:
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
"""
if use_real:
cos, sin = freqs_cis # [S, D]
if cos.ndim == 2:
cos = cos[None, None]
else:
cos = cos.unsqueeze(1)
if sin.ndim == 2:
sin = sin[None, None]
else:
sin = sin.unsqueeze(1)
cos, sin = cos.to(x.device), sin.to(x.device)
if use_real_unbind_dim == -1:
# Used for flux, cogvideox, hunyuan-dit
x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2]
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
elif use_real_unbind_dim == -2:
# Used for Stable Audio
x_real, x_imag = x.reshape(*x.shape[:-1], 2, -1).unbind(-2) # [B, S, H, D//2]
x_rotated = torch.cat([-x_imag, x_real], dim=-1)
else:
raise ValueError(f"`use_real_unbind_dim={use_real_unbind_dim}` but should be -1 or -2.")
out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
return out
else:
# used for lumina
x_rotated = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2))
freqs_cis = freqs_cis.unsqueeze(2)
x_out = torch.view_as_real(x_rotated * freqs_cis).flatten(3)
return x_out.type_as(x)
class FluxAttnSharedProcessor2_0:
"""Attention processor used typically in processing the SD3-like self-attention projections."""
def __init__(self):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
attention_mask: Optional[torch.FloatTensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
data_num_per_group: Optional[int] = 1,
max_sequence_length: Optional[int] = 512,
mix_attention: bool = True,
cond_latents = None,
cond_image_rotary_emb = None,
work_mode = None,
mask_cond = None,
) -> torch.FloatTensor:
with_cond = cond_latents is not None and mix_attention
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
# `sample` projections.
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
if encoder_hidden_states is not None:
# `context` projections.
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
if attn.norm_added_q is not None:
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
if attn.norm_added_k is not None:
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
# attention
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
if image_rotary_emb is not None:
query = apply_rotary_emb(query, image_rotary_emb)
key = apply_rotary_emb(key, image_rotary_emb)
if with_cond:
cond_bs = cond_latents.shape[0]
# update condition
cond_query = attn.to_q(cond_latents)
cond_query = cond_query.view(cond_bs, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_q is not None:
cond_query = attn.norm_q(cond_query)
cond_query = apply_rotary_emb(cond_query, cond_image_rotary_emb)
cond_query = torch.cat(cond_query.chunk(len(cond_query), dim=0), dim=2)
cond_key = attn.to_k(cond_latents)
cond_value = attn.to_v(cond_latents)
cond_key = cond_key.view(cond_bs, -1, attn.heads, head_dim).transpose(1, 2)
cond_value = cond_value.view(cond_bs, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_k is not None:
cond_key = attn.norm_k(cond_key)
cond_key = apply_rotary_emb(cond_key, cond_image_rotary_emb)
cond_key = torch.cat(cond_key.chunk(len(cond_key), dim=0), dim=2)
cond_value = torch.cat(cond_value.chunk(len(cond_value), dim=0), dim=2)
if data_num_per_group > 1 and mix_attention:
E = max_sequence_length # according to text len
key_enc, key_hid = key[:, :, :E], key[:, :, E:]
value_enc, value_hid = value[:, :, :E], value[:, :, E:]
key_layer = key_hid.chunk(data_num_per_group, dim=0)
key_layer = torch.cat(key_layer, dim=2).repeat(data_num_per_group, 1, 1, 1)
value_layer = value_hid.chunk(data_num_per_group, dim=0)
value_layer = torch.cat(value_layer, dim=2).repeat(data_num_per_group, 1, 1, 1)
key = torch.cat([key_enc, key_layer], dim=2)
value = torch.cat([value_enc, value_layer], dim=2)
elif data_num_per_group == 1 and mix_attention and with_cond:
E = max_sequence_length # according to text len
key_enc, key_hid = key[:, :, :E], key[:, :, E:]
value_enc, value_hid = value[:, :, :E], value[:, :, E:]
# todo: support bs != 1
key_layer = torch.cat([key_hid, cond_key], dim=2)
value_layer = torch.cat([value_hid, cond_value], dim=2)
key = torch.cat([key_enc, key_layer], dim=2)
value = torch.cat([value_enc, value_layer], dim=2)
# concat query
query_enc, query_hid = query[:, :, :E], query[:, :, E:]
query_layer = torch.cat([query_hid, cond_query], dim=2)
query = torch.cat([query_enc, query_layer], dim=2)
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False,
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
if encoder_hidden_states is not None:
if with_cond:
encoder_hidden_states, hidden_states, cond_latents = (
hidden_states[:, : encoder_hidden_states.shape[1]],
hidden_states[:, encoder_hidden_states.shape[1] : -cond_latents.shape[1]*cond_bs],
hidden_states[:, -cond_latents.shape[1]*cond_bs :],
)
cond_latents = cond_latents.view(cond_bs, cond_latents.shape[1] // cond_bs, cond_latents.shape[2])
cond_latents = attn.to_out[0](cond_latents)
cond_latents = attn.to_out[1](cond_latents)
else:
encoder_hidden_states, hidden_states = (
hidden_states[:, : encoder_hidden_states.shape[1]],
hidden_states[:, encoder_hidden_states.shape[1]:],
)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
if with_cond:
return hidden_states, encoder_hidden_states, cond_latents
return hidden_states, encoder_hidden_states
else:
if with_cond:
hidden_states, cond_latents = (
hidden_states[:, : -cond_latents.shape[1]*cond_bs],
hidden_states[:, -cond_latents.shape[1]*cond_bs :],
)
cond_latents = cond_latents.view(cond_bs, cond_latents.shape[1] // cond_bs, cond_latents.shape[2])
return hidden_states, cond_latents
return hidden_states
|