Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,947 Bytes
15c3cb0 9e6ebab 15c3cb0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
import gradio as gr
import numpy as np
import spaces
import torch
import random
import os
import subprocess
import logging
import safetensors
#####################################################
# Forced Diffusers upgrade when cache was being stubborn; probably not needed now
# force = subprocess.run("pip install -U diffusers", shell=True)
# force = subprocess.run("pip install git+https://github.com/huggingface/diffusers.git", shell=True)
# force = subprocess.run("pip install git+https://github.com/huggingface/transformers.git", shell=True)
force = subprocess.run("git lfs install", shell=True)
#####################################################
import transformers
import diffusers
from diffusers import DiffusionPipeline
import bitsandbytes
from diffusers.quantizers import PipelineQuantizationConfig
from diffusers.utils import load_image
from diffusers import FluxKontextPipeline
from PIL import Image
from huggingface_hub import hf_hub_download
from huggingface_hub import create_repo, upload_folder
from huggingface_hub.utils._runtime import dump_environment_info
from safetensors import safe_open
#####################################################
MAX_SEED = np.iinfo(np.int32).max
API_TOKEN = os.environ['HF_TOKEN']
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
os.environ.setdefault('GRADIO_ANALYTICS_ENABLED', 'False')
os.environ.setdefault('HF_HUB_DISABLE_TELEMETRY', '1')
dump_environment_info()
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
#####################################################
# TESTING TWO QUANTIZATION METHODS
# 1) If FP8 is supported; `torchao` for quantization
# quant_config = PipelineQuantizationConfig(
# quant_backend="torchao",
# quant_kwargs={"quant_type": "float8dq_e4m3_row"},
# components_to_quantize=["transformer"]
# )
# 2) Otherwise, standard 4-bit quantization with bitsandbytes
# quant_config = PipelineQuantizationConfig(
# quant_backend="bitsandbytes_4bit",
# quant_kwargs={"load_in_4bit": True, "bnb_4bit_compute_dtype": torch.bfloat16, "bnb_4bit_quant_type": "nf4"},
# components_to_quantize=["transformer"]
# )
try:
# Set max memory usage for ZeroGPU
torch.cuda.set_per_process_memory_fraction(1.0)
torch.set_float32_matmul_precision("high")
except Exception as e:
print(f"Error setting memory usage: {e}")
#####################################################
# Load the pipeline with the specified quantization configuration.
# We use bfloat16 as the base dtype for mixed-precision inference.
# HF Spaces VRAM (50 GB) is sufficient to hold the entire pipeline (31.424 GB),
# Leave the entire pipeline to the GPU for the best performance.
# FLUX.1 Dev Kontext Lightning Model / 8-Steps
kontext_model = "LPX55/FLUX.1_Kontext-Lightning"
pipe = FluxKontextPipeline.from_pretrained(
"LPX55/FLUX.1_Kontext-Lightning",
torch_dtype=torch.float16
).to("cuda")
# Save as a single `.safetensors` file
pipe.save_pretrained(
"./flux_16bit",
safe_serialization=True,
max_shard_size="100GB" # Forces all shards into one file (no split files)
)
local_folder = "./flux_16bit"
hub_repo_name = "LPX55/FLUX.1_Kontext-Lightning"
# create_repo(hub_repo_name, exist_ok=True, private=False)
# with safe_open("./flux_16bit/model.safetensors", framework="pt", device="cuda") as f:
# for k in f.keys():
# print(k, f.get_slice(k).shape)
upload_folder(
folder_path=local_folder,
path_in_repo="float16",
repo_id=hub_repo_name,
repo_type="model",
commit_message="Upload half-precision FLUX.1 Kontext Lightning model",
token=API_TOKEN
)
###################################################
# SECTION FOR LORA(S); SKIP FOR NOW
# try:
# repo_name = ""
# ckpt_name = ""
# pipe.load_lora_weights(hf_hub_download(repo_name, ckpt_name), adapter_name="A1")
# pipe.set_adapters(["A1"], adapter_weights=[0.5])
# pipe.fuse_lora(adapter_names=["A1"], lora_scale=1.0)
# pipe.unload_lora_weights()
# except Exception as e:
# print(f"Error while loading Lora: {e}")
#####################################################
def concatenate_images(images, direction="horizontal"):
"""
Concatenate multiple PIL images either horizontally or vertically.
Args:
images: List of PIL Images
direction: "horizontal" or "vertical"
Returns:
PIL Image: Concatenated image
"""
if not images:
return None
# Filter out None images
valid_images = [img for img in images if img is not None]
if not valid_images:
return None
if len(valid_images) == 1:
return valid_images[0].convert("RGB")
# Convert all images to RGB
valid_images = [img.convert("RGB") for img in valid_images]
if direction == "horizontal":
# Calculate total width and max height
total_width = sum(img.width for img in valid_images)
max_height = max(img.height for img in valid_images)
# Create new image
concatenated = Image.new('RGB', (total_width, max_height), (255, 255, 255))
# Paste images
x_offset = 0
for img in valid_images:
# Center image vertically if heights differ
y_offset = (max_height - img.height) // 2
concatenated.paste(img, (x_offset, y_offset))
x_offset += img.width
else: # vertical
# Calculate max width and total height
max_width = max(img.width for img in valid_images)
total_height = sum(img.height for img in valid_images)
# Create new image
concatenated = Image.new('RGB', (max_width, total_height), (255, 255, 255))
# Paste images
y_offset = 0
for img in valid_images:
# Center image horizontally if widths differ
x_offset = (max_width - img.width) // 2
concatenated.paste(img, (x_offset, y_offset))
y_offset += img.height
return concatenated
@spaces.GPU
@torch.no_grad()
def infer(input_images, prompt, seed=42, randomize_seed=False, guidance_scale=2.5, steps=8, width=1024, height=1024, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Handle input_images - it could be a single image or a list of images
if input_images is None:
raise gr.Error("Please upload at least one image.")
# If it's a single image (not a list), convert to list
if not isinstance(input_images, list):
input_images = [input_images]
# Filter out None images
valid_images = [img[0] for img in input_images if img is not None]
if not valid_images:
raise gr.Error("Please upload at least one valid image.")
# Concatenate images horizontally
concatenated_image = concatenate_images(valid_images, "horizontal")
if concatenated_image is None:
raise gr.Error("Failed to process the input images.")
# original_width, original_height = concatenated_image.size
# if original_width >= original_height:
# new_width = 1024
# new_height = int(original_height * (new_width / original_width))
# new_height = round(new_height / 64) * 64
# else:
# new_height = 1024
# new_width = int(original_width * (new_height / original_height))
# new_width = round(new_width / 64) * 64
#concatenated_image_resized = concatenated_image.resize((new_width, new_height), Image.LANCZOS)
final_prompt = f"From the provided reference images, create a unified, cohesive image such that {prompt}. Maintain the identity and characteristics of each subject while adjusting their proportions, scale, and positioning to create a harmonious, naturally balanced composition. Blend and integrate all elements seamlessly with consistent lighting, perspective, and style.the final result should look like a single naturally captured scene where all subjects are properly sized and positioned relative to each other, not assembled from multiple sources."
image = pipe(
image=concatenated_image,
prompt=final_prompt,
guidance_scale=guidance_scale,
width=width,
height=height,
max_area=width * height,
num_inference_steps=steps,
generator=torch.Generator().manual_seed(seed),
).images[0]
return image, seed, gr.update(visible=True)
css="""
#col-container {
margin: 0 auto;
max-width: 86vw;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# FLUX.1 Kontext | Lightning 8-Step Model ⚡
""")
with gr.Row():
with gr.Column():
input_images = gr.Gallery(
label="Upload image(s) for editing",
show_label=True,
elem_id="gallery_input",
columns=3,
rows=2,
object_fit="contain",
height="auto",
file_types=['image'],
type='pil'
)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt for editing (e.g., 'Remove glasses', 'Add a hat')",
container=False,
)
run_button = gr.Button("Run", scale=0)
with gr.Accordion("Advanced Settings", open=True):
with gr.Group():
width = gr.Slider(
label="W",
minimum=512,
maximum=2560,
step=64,
value=1024,
)
height = gr.Slider(
label="H",
minimum=512,
maximum=2560,
step=64,
value=1024,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=10,
step=0.1,
value=2.5,
)
input_steps = gr.Slider(
label="Steps",
minimum=1,
maximum=30,
step=1,
value=16,
)
with gr.Column():
result = gr.Image(label="Result", show_label=False, interactive=False)
reuse_button = gr.Button("Reuse this image", visible=False)
gr.on(
triggers=[run_button.click, prompt.submit],
fn = infer,
inputs = [input_images, prompt, seed, randomize_seed, guidance_scale, input_steps, width, height],
outputs = [result, seed, reuse_button]
)
reuse_button.click(
fn = lambda image: [image] if image is not None else [], # Convert single image to list for gallery
inputs = [result],
outputs = [input_images]
)
demo.queue().launch() |