LPX55's picture
Update app_kontext.py
0116076 verified
import gradio as gr
import numpy as np
import spaces
import torch
import random
import os
import subprocess
import logging
#####################################################
# Forced Diffusers upgrade when cache was being stubborn; probably not needed now
force = subprocess.run("pip install -U diffusers", shell=True)
force = subprocess.run("pip install git+https://github.com/huggingface/diffusers.git", shell=True)
force = subprocess.run("pip install git+https://github.com/huggingface/transformers.git", shell=True)
#####################################################
import transformers
import diffusers
from diffusers import DiffusionPipeline
import bitsandbytes
from diffusers.quantizers import PipelineQuantizationConfig
from diffusers.utils import load_image
from diffusers import FluxKontextPipeline
from PIL import Image
from huggingface_hub import hf_hub_download
from huggingface_hub.utils._runtime import dump_environment_info
#####################################################
MAX_SEED = np.iinfo(np.int32).max
API_TOKEN = os.environ['HF_TOKEN']
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
os.environ.setdefault('GRADIO_ANALYTICS_ENABLED', 'False')
os.environ.setdefault('HF_HUB_DISABLE_TELEMETRY', '1')
dump_environment_info()
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
#####################################################
# TESTING TWO QUANTIZATION METHODS
# 1) If FP8 is supported; `torchao` for quantization
# quant_config = PipelineQuantizationConfig(
# quant_backend="torchao",
# quant_kwargs={"quant_type": "float8dq_e4m3_row"},
# components_to_quantize=["transformer"]
# )
# 2) Otherwise, standard 4-bit quantization with bitsandbytes
quant_config = PipelineQuantizationConfig(
quant_backend="bitsandbytes_4bit",
quant_kwargs={"load_in_4bit": True, "bnb_4bit_compute_dtype": torch.bfloat16, "bnb_4bit_quant_type": "nf4"},
components_to_quantize=["transformer"]
)
try:
# Set max memory usage for ZeroGPU
torch.cuda.set_per_process_memory_fraction(1.0)
torch.set_float32_matmul_precision("high")
except Exception as e:
print(f"Error setting memory usage: {e}")
#####################################################
# Load the pipeline with the specified quantization configuration.
# We use bfloat16 as the base dtype for mixed-precision inference.
# HF Spaces VRAM (50 GB) is sufficient to hold the entire pipeline (31.424 GB),
# Leave the entire pipeline to the GPU for the best performance.
# FLUX.1 Dev Kontext Lightning Model / 8-Steps
kontext_model = "buildborderless/FLUX.1_Kontext-Lightning-8step"
pipe = FluxKontextPipeline.from_pretrained(
kontext_model,
quantization_config=quant_config,
torch_dtype=torch.bfloat16
).to(DEVICE)
#####################################################
# SECTION FOR LORA(S); SKIP FOR NOW
# try:
# repo_name = ""
# ckpt_name = ""
# pipe.load_lora_weights(hf_hub_download(repo_name, ckpt_name), adapter_name="A1")
# pipe.set_adapters(["A1"], adapter_weights=[0.5])
# pipe.fuse_lora(adapter_names=["A1"], lora_scale=1.0)
# pipe.unload_lora_weights()
# except Exception as e:
# print(f"Error while loading Lora: {e}")
#####################################################
def concatenate_images(images, direction="horizontal"):
"""
Concatenate multiple PIL images either horizontally or vertically.
Args:
images: List of PIL Images
direction: "horizontal" or "vertical"
Returns:
PIL Image: Concatenated image
"""
if not images:
return None
# Filter out None images
valid_images = [img for img in images if img is not None]
if not valid_images:
return None
if len(valid_images) == 1:
return valid_images[0].convert("RGB")
# Convert all images to RGB
valid_images = [img.convert("RGB") for img in valid_images]
if direction == "horizontal":
# Calculate total width and max height
total_width = sum(img.width for img in valid_images)
max_height = max(img.height for img in valid_images)
# Create new image
concatenated = Image.new('RGB', (total_width, max_height), (255, 255, 255))
# Paste images
x_offset = 0
for img in valid_images:
# Center image vertically if heights differ
y_offset = (max_height - img.height) // 2
concatenated.paste(img, (x_offset, y_offset))
x_offset += img.width
else: # vertical
# Calculate max width and total height
max_width = max(img.width for img in valid_images)
total_height = sum(img.height for img in valid_images)
# Create new image
concatenated = Image.new('RGB', (max_width, total_height), (255, 255, 255))
# Paste images
y_offset = 0
for img in valid_images:
# Center image horizontally if widths differ
x_offset = (max_width - img.width) // 2
concatenated.paste(img, (x_offset, y_offset))
y_offset += img.height
return concatenated
@spaces.GPU
@torch.no_grad()
def infer(input_images, prompt, seed=42, randomize_seed=False, guidance_scale=2.5, steps=8, width=1024, height=1024, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Handle input_images - it could be a single image or a list of images
if input_images is None:
raise gr.Error("Please upload at least one image.")
# If it's a single image (not a list), convert to list
if not isinstance(input_images, list):
input_images = [input_images]
# Filter out None images
valid_images = [img[0] for img in input_images if img is not None]
if not valid_images:
raise gr.Error("Please upload at least one valid image.")
# Concatenate images horizontally
concatenated_image = concatenate_images(valid_images, "horizontal")
if concatenated_image is None:
raise gr.Error("Failed to process the input images.")
# original_width, original_height = concatenated_image.size
# if original_width >= original_height:
# new_width = 1024
# new_height = int(original_height * (new_width / original_width))
# new_height = round(new_height / 64) * 64
# else:
# new_height = 1024
# new_width = int(original_width * (new_height / original_height))
# new_width = round(new_width / 64) * 64
#concatenated_image_resized = concatenated_image.resize((new_width, new_height), Image.LANCZOS)
final_prompt = f"From the provided reference images, create a unified, cohesive image such that {prompt}. Maintain the identity and characteristics of each subject while adjusting their proportions, scale, and positioning to create a harmonious, naturally balanced composition. Blend and integrate all elements seamlessly with consistent lighting, perspective, and style.the final result should look like a single naturally captured scene where all subjects are properly sized and positioned relative to each other, not assembled from multiple sources."
image = pipe(
image=concatenated_image,
prompt=final_prompt,
guidance_scale=guidance_scale,
width=width,
height=height,
max_area=width * height,
num_inference_steps=steps,
generator=torch.Generator().manual_seed(seed),
).images[0]
return image, seed, gr.update(visible=True)
css="""
#col-container {
margin: 0 auto;
max-width: 86vw;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# FLUX.1 Kontext | Lightning 8-Step Model ⚡
""")
with gr.Row():
with gr.Column():
input_images = gr.Gallery(
label="Upload image(s) for editing",
show_label=True,
elem_id="gallery_input",
columns=3,
rows=2,
object_fit="contain",
height="auto",
file_types=['image'],
type='pil'
)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt for editing (e.g., 'Remove glasses', 'Add a hat')",
container=False,
)
run_button = gr.Button("Run", scale=0)
with gr.Accordion("Advanced Settings", open=True):
with gr.Group():
width = gr.Slider(
label="W",
minimum=512,
maximum=2560,
step=64,
value=1024,
)
height = gr.Slider(
label="H",
minimum=512,
maximum=2560,
step=64,
value=1024,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=10,
step=0.1,
value=2.5,
)
input_steps = gr.Slider(
label="Steps",
minimum=1,
maximum=30,
step=1,
value=8,
)
with gr.Column():
result = gr.Image(label="Result", show_label=False, interactive=False)
reuse_button = gr.Button("Reuse this image", visible=False)
gr.on(
triggers=[run_button.click, prompt.submit],
fn = infer,
inputs = [input_images, prompt, seed, randomize_seed, guidance_scale, input_steps, width, height],
outputs = [result, seed, reuse_button]
)
reuse_button.click(
fn = lambda image: [image] if image is not None else [], # Convert single image to list for gallery
inputs = [result],
outputs = [input_images]
)
demo.queue().launch()