Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
|
3 |
+
from qwen_vl_utils import process_vision_info
|
4 |
+
from PIL import Image
|
5 |
+
import torch
|
6 |
+
|
7 |
+
# Load the model and processor
|
8 |
+
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
9 |
+
"daniel3303/QwenStoryteller",
|
10 |
+
torch_dtype="auto",
|
11 |
+
device_map="auto"
|
12 |
+
)
|
13 |
+
processor = AutoProcessor.from_pretrained("daniel3303/QwenStoryteller")
|
14 |
+
|
15 |
+
def generate_story(images):
|
16 |
+
image_content = []
|
17 |
+
for img in images[:6]:
|
18 |
+
image_content.append({
|
19 |
+
"type": "image",
|
20 |
+
"image": img,
|
21 |
+
})
|
22 |
+
|
23 |
+
# Add text prompt at the end
|
24 |
+
image_content.append({"type": "text", "text": "Generate a story based on these images."})
|
25 |
+
|
26 |
+
# Create messages with system prompt
|
27 |
+
messages = [
|
28 |
+
{
|
29 |
+
"role": "system",
|
30 |
+
"content": "You are an AI storyteller that can analyze sequences of images and create creative narratives. First think step-by-step to analyze characters, objects, settings, and narrative structure. Then create a grounded story that maintains consistent character identity and object references across frames. Use π§ tags to show your reasoning process before writing the final story."
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"role": "user",
|
34 |
+
"content": image_content,
|
35 |
+
}
|
36 |
+
]
|
37 |
+
|
38 |
+
# Preparation for inference
|
39 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
40 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
41 |
+
inputs = processor(
|
42 |
+
text=[text],
|
43 |
+
images=image_inputs,
|
44 |
+
videos=video_inputs,
|
45 |
+
padding=True,
|
46 |
+
return_tensors="pt"
|
47 |
+
)
|
48 |
+
inputs = inputs.to(model.device)
|
49 |
+
|
50 |
+
# Inference: Generate the output
|
51 |
+
generated_ids = model.generate(
|
52 |
+
**inputs,
|
53 |
+
max_new_tokens=4096,
|
54 |
+
do_sample=True,
|
55 |
+
temperature=0.7,
|
56 |
+
top_p=0.9
|
57 |
+
)
|
58 |
+
generated_ids_trimmed = [
|
59 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
60 |
+
]
|
61 |
+
story = processor.batch_decode(
|
62 |
+
generated_ids_trimmed,
|
63 |
+
skip_special_tokens=True,
|
64 |
+
clean_up_tokenization_spaces=False
|
65 |
+
)[0]
|
66 |
+
|
67 |
+
return story
|
68 |
+
|
69 |
+
demo = gr.Interface(
|
70 |
+
fn=generate_story,
|
71 |
+
inputs=gr.Image(type="pil", label="Upload up to 6 images", image_mode="RGB", height=300, width=300, file_types=[".jpg", ".jpeg", ".png", ".webp"]),
|
72 |
+
outputs=gr.Textbox(label="Generated Story", lines=10),
|
73 |
+
title="Qwen Storyteller",
|
74 |
+
description="Upload up to 6 images to generate a creative story."
|
75 |
+
)
|
76 |
+
|
77 |
+
if __name__ == "__main__":
|
78 |
+
demo.launch()
|