Spaces:
Running
Running
File size: 8,430 Bytes
20235b3 9c8a515 20235b3 79e3e7f 20235b3 d36ef60 20235b3 11f36f0 20235b3 9c8a515 9e0c99a 20235b3 9c8a515 20235b3 9c8a515 20235b3 9c8a515 20235b3 9c8a515 20235b3 9c8a515 20235b3 11f36f0 9e0c99a 20235b3 a0c8c4f 20235b3 a0c8c4f 20235b3 84c6533 20235b3 9233412 a0c8c4f 20235b3 9e0c99a 20235b3 84c6533 20235b3 11f36f0 20235b3 11f36f0 20235b3 11f36f0 20235b3 11f36f0 20235b3 11f36f0 d36ef60 11f36f0 a0c8c4f 20235b3 9c8a515 20235b3 9c8a515 20235b3 573bf66 20235b3 9c8a515 20235b3 db7beab 20235b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
import json
import os
import random
import uuid
import datetime
import re
from typing import List, Tuple, Dict, Optional, Generator, Any
from agent import (
PREFIX,
COMPRESS_DATA_PROMPT_SMALL,
COMPRESS_DATA_PROMPT,
LOG_PROMPT,
LOG_RESPONSE
)
import gradio as gr
import requests
from bs4 import BeautifulSoup
from pypdf import PdfReader
import openai
from huggingface_hub import HfApi
# Configuration
OPENAI_API_BASE = "https://openrouter.ai/api/v1"
OPENAI_API_KEY = os.environ.get("OR_KEY", "")
REPO_NAME = "LPX55/ArxivPapers"
SAVE_DATA_URL = f"https://huggingface.co/datasets/{REPO_NAME}/raw/main/"
HF_TOKEN = os.environ.get("HF_TOKEN", "")
api = HfApi(token=HF_TOKEN)
# Initialize OpenAI client
openai.api_base = OPENAI_API_BASE
openai.api_key = OPENAI_API_KEY
VERBOSE = True # Set to False to disable debug logging
# Indexing Constants
INDEX_PROMPT = """Compile this data into a structured JSON format with these keys:
- "keywords": List of important keywords
- "title": Descriptive title
- "description": Brief summary
- "content": Main content
- "url": Source URL if available
"""
def extract_paper_metadata(content: str) -> Dict:
"""Extract structured metadata from a paper's content."""
metadata = {
"keywords": [],
"title": "Untitled",
"description": "No description",
"content": content[:1000],
"url": ""
}
# Extract URL
url_match = re.search(r'https?://[^\s]+', content)
if url_match:
metadata['url'] = url_match.group(0)
# Extract title (first line that looks like a title)
lines = content.split('\n')
for line in lines:
if len(line) > 20 and line[0].isupper() and line[-1] in ('.', '?', '!'):
metadata['title'] = line
break
# Extract description (first paragraph)
paragraphs = [p for p in content.split('\n\n') if len(p) > 50]
if paragraphs:
metadata['description'] = paragraphs[0]
# Extract keywords (from title and description)
text_for_keywords = f"{metadata['title']} {metadata['description']}"
words = [w.lower() for w in re.findall(r'\w+', text_for_keywords) if len(w) > 3]
metadata['keywords'] = sorted(list(set(words)))[:10] # Get top 10 unique keywords
return metadata
def save_paper_to_memory(content: str) -> Dict:
"""Save a paper to memory with proper metadata extraction."""
metadata = extract_paper_metadata(content)
# Additional processing for academic papers
if 'arxiv' in metadata['url'].lower():
metadata['keywords'].extend(['arxiv', 'paper', 'research'])
metadata['description'] = f"Academic paper: {metadata['description']}"
return metadata
def create_index() -> None:
"""Create or update the search index from memory files."""
uid = uuid.uuid4()
# Load existing index
index_url = f"{SAVE_DATA_URL}mem-test2/index.json"
r = requests.get(index_url)
index_data = json.loads(r.text) if r.status_code == 200 else [{}]
# Load main memory data
main_url = f"{SAVE_DATA_URL}mem-test2/main.json"
m = requests.get(main_url)
main_data = json.loads(m.text) if m.status_code == 200 else []
# Update index
for entry in main_data:
try:
for keyword in entry.get('keywords', []):
if keyword in index_data[0]:
if entry['file_name'] not in index_data[0][keyword]:
index_data[0][keyword].append(entry['file_name'])
else:
index_data[0][keyword] = [entry['file_name']]
except Exception as e:
print(f"Indexing error: {e}")
# Save updated index
index_path = f"tmp-index-{uid}.json"
with open(index_path, "w") as f:
json.dump(index_data, f)
api.upload_file(
path_or_fileobj=index_path,
path_in_repo="/mem-test2/index.json",
repo_id=REPO_NAME,
repo_type="dataset",
)
def fetch_url_content(url: str) -> Tuple[bool, str]:
"""Fetch content from a URL and return status and content."""
try:
if not url:
return False, "Enter valid URL"
response = requests.get(url)
if response.status_code == 200:
soup = BeautifulSoup(response.content, "lxml")
return True, str(soup)
return False, f"Status: {response.status_code}"
except Exception as e:
return False, f"Error: {e}"
def read_file_content(file_path: str) -> str:
"""Read content from a file (txt or pdf)."""
if file_path.endswith(".pdf"):
reader = PdfReader(file_path)
return "\n".join(page.extract_text() for page in reader.pages)
elif file_path.endswith(".txt"):
with open(file_path, "r") as f:
return f.read()
return ""
def generate_response(prompt: str, model: str = "meta-llama/llama-4-maverick:free") -> str:
"""Generate response using OpenRouter API."""
try:
response = openai.ChatCompletion.create(
model=model,
messages=[{"role": "user", "content": prompt}],
)
return response.choices[0].message.content
except Exception as e:
return f"Error: {str(e)}"
def process_pdf_url(pdf_url: str) -> str:
"""Process PDF from URL and extract text."""
try:
response = requests.get(pdf_url, stream=True)
if response.status_code == 200:
temp_path = f"temp_{uuid.uuid4()}.pdf"
with open(temp_path, "wb") as f:
f.write(response.content)
return read_file_content(temp_path)
return f"Error: Status {response.status_code}"
except Exception as e:
return f"Error: {e}"
def save_memory(purpose: str, content: str) -> List[Dict]:
"""Save processed content to memory with proper metadata extraction."""
metadata = extract_paper_metadata(content)
return [metadata]
def summarize(
inp: str,
history: List[Tuple[str, str]],
report_check: bool,
sum_check: bool,
mem_check: bool,
data: str = "",
file: Optional[str] = None,
url: str = "",
pdf_url: str = "",
model: str = "meta-llama/llama-4-maverick:free"
) -> Generator[Tuple[str, List[Tuple[str, str]], str, Dict], None, None]:
"""Main summarization function with memory support."""
history = [(inp, "Processing...")]
yield "", history, "", {}
processed_data = ""
if pdf_url.startswith("http"):
processed_data += f"PDF URL: {pdf_url}\n"
if url.startswith("http"):
processed_data += f"URL: {url}\n"
if file:
processed_data += f"File: {file}\n"
if data:
processed_data += f"Data: {data[:1000]}\n"
summary = f"Summary for: {inp[:100]}\n{processed_data[:500]}"
memory_entries = []
if mem_check:
memory_entries = save_memory(inp, processed_data)
if memory_entries:
summary += "\n\nSaved to memory"
else:
summary += "\n\nMemory save failed"
yield summary, history, "", memory_entries[0] if memory_entries else {}
def create_app():
with gr.Blocks() as app:
gr.Markdown("## Mixtral 8x7B Summarizer")
with gr.Row():
with gr.Column(scale=3):
prompt = gr.Textbox(label="Instruction")
with gr.Column(scale=1):
report_check = gr.Checkbox(label="Return report", value=True)
sum_check = gr.Checkbox(label="Summarize", value=True)
mem_check = gr.Checkbox(label="Memory", value=True)
submit_btn = gr.Button("Submit")
with gr.Row():
with gr.Tab("Text"):
data = gr.Textbox(label="Input text")
with gr.Tab("File"):
file = gr.File(label="Upload file")
with gr.Tab("URL"):
url = gr.Textbox(label="Website URL")
with gr.Tab("PDF"):
pdf_url = gr.Textbox(label="PDF URL")
chatbot = gr.Chatbot()
error_box = gr.Textbox()
json_output = gr.JSON()
submit_btn.click(
summarize,
[prompt, chatbot, report_check, sum_check, mem_check, data, file, url, pdf_url],
[prompt, chatbot, error_box, json_output]
)
return app
if __name__ == "__main__":
app = create_app()
app.launch()
|