File size: 5,651 Bytes
10fc801
 
26e8604
74905bc
26e8604
74905bc
 
 
10fc801
26e8604
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10fc801
 
26e8604
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import gradio as gr
from transformers import AutoModel, AutoProcessor
from PIL import Image, ImageDraw, ImageFont
import logging
from datasets import load_dataset

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class DFineDemo:
    def __init__(self):
        self.processor = AutoProcessor.from_pretrained("Laudando-Associates-LLC/d-fine", trust_remote_code=True)

        self.model_variants = {
            "D-FINE Nano": "Laudando-Associates-LLC/d-fine-nano",
            "D-FINE Small": "Laudando-Associates-LLC/d-fine-small",
            "D-FINE Medium": "Laudando-Associates-LLC/d-fine-medium",
            "D-FINE Large": "Laudando-Associates-LLC/d-fine-large",
            "D-FINE X-Large": "Laudando-Associates-LLC/d-fine-xlarge"
        }

        logger.info("Loading all D-FINE model variants into memory...")
        self.models = {
            name: AutoModel.from_pretrained(repo, trust_remote_code=True)
            for name, repo in self.model_variants.items()
        }

        dataset = load_dataset("Laudando-Associates-LLC/pucks", split="test")
        self.image_cache = {
            f"Test Image {i+1}": {
                "input": example["image"],
                "annotated": example["annotated_image"]
            }
            for i, example in enumerate(dataset)
        }
        self.image_labels = list(self.image_cache.keys())

    def run_inference(self, input_image, model_name, threshold):

        # Find matching annotated image based on value in self.image_cache
        for label, pair in self.image_cache.items():
            if pair["input"] == input_image:
                annotated = pair["annotated"]
                break
        else:
            annotated = input_image  # fallback

        # Predict
        image = input_image.copy()
        inputs = self.processor(image)
        outputs = self.models[model_name](**inputs, conf_threshold=threshold)

        draw = ImageDraw.Draw(image)
        font = ImageFont.truetype("DejaVuSans-Bold.ttf", size=24)
        for result in outputs:
            for box, score in zip(result["boxes"], result["scores"]):
                x1, y1, x2, y2 = box.tolist()
                draw.rectangle([x1, y1, x2, y2], outline="blue", width=5)
                draw.text((x1, max(0, y1 - 25)), f"{score:.2f}", fill="blue", font=font)

        # Return: (annotated_image, predicted_image)
        return gr.update(value=(annotated, image), slider_position=50, format="png", type="pil")

    def select_image(self, evt: gr.SelectData):
        if evt is None or evt.index is None:
            return gr.update()
        label = self.image_labels[evt.index]
        return self.image_cache[label]["input"]

    def launch(self):
        with gr.Blocks(theme=gr.themes.Ocean()) as demo:
            gr.Markdown("""
            ## D-FINE Detection Demo

            This demo compares annotated ground truth data (in **red**) and model predictions (in **blue**).  
            Use the **slider** to visually compare both views:  
            - The **left image** shows the annotated labels.  
            - The **right image** displays predictions from the selected D-FINE model, with each bounding box and its confidence score.

            📂 **Training Dataset**: All D-FINE variants were trained on the [L&A Pucks Dataset](https://huggingface.co/datasets/Laudando-Associates-LLC/pucks) available on Hugging Face.
            """)

            output = gr.ImageSlider(type="pil", label="Detected Output", height=500, width=880, slider_position=50, format="png")

            with gr.Row():
                model_selector = gr.Radio(
                    choices=list(self.model_variants.keys()),
                    label="Choose D-FINE model",
                    value="D-FINE Nano"
                )
                threshold_slider = gr.Slider(
                    minimum=0.1,
                    maximum=0.955,
                    value=0.4,
                    step=0.05,
                    label="Confidence Threshold"
                )
                run_btn = gr.Button("Run Detection")

            selected_image = gr.State(value=self.image_cache[self.image_labels[0]])

            gr.Markdown("### Select a sample image below:")

            gallery = gr.Gallery(
                value=[(pair["input"], label) for label, pair in self.image_cache.items()],
                label=None,
                show_label=False,
                columns=[3],
                object_fit="cover",
                height="auto",
                allow_preview=False
            )

            gallery.select(
                fn=self.select_image,
                inputs=[],
                outputs=selected_image
            )

            run_btn.click(
                fn=self.run_inference,
                inputs=[selected_image, model_selector, threshold_slider],
                outputs=output
            )

            gr.Markdown("### Citation")

            gr.Markdown("""
            If you use **D-FINE** or its methods in your work, please cite the following BibTeX entry:

            ```latex
            @misc{peng2024dfine,
                title={D-FINE: Redefine Regression Task in DETRs as Fine-grained Distribution Refinement},
                author={Yansong Peng and Hebei Li and Peixi Wu and Yueyi Zhang and Xiaoyan Sun and Feng Wu},
                year={2024},
                eprint={2410.13842},
                archivePrefix={arXiv},
                primaryClass={cs.CV}
            }
            ```
            """)

        demo.launch()


if __name__ == "__main__":
    app = DFineDemo()
    app.launch()