|
|
|
|
|
from torchvision.models import resnet18, resnet50, resnet101, resnet152, vgg16, vgg19, inception_v3 |
|
import torch |
|
import torch.nn as nn |
|
import random |
|
import numpy as np |
|
|
|
|
|
class EncoderCNN(nn.Module): |
|
def __init__(self, embed_size, dropout=0.5, image_model='resnet101', pretrained=True): |
|
"""Load the pretrained ResNet-152 and replace top fc layer.""" |
|
super(EncoderCNN, self).__init__() |
|
resnet = globals()[image_model](pretrained=pretrained) |
|
modules = list(resnet.children())[:-2] |
|
self.resnet = nn.Sequential(*modules) |
|
|
|
self.linear = nn.Sequential(nn.Conv2d(resnet.fc.in_features, embed_size, kernel_size=1, padding=0), |
|
nn.Dropout2d(dropout)) |
|
|
|
def forward(self, images, keep_cnn_gradients=False): |
|
"""Extract feature vectors from input images.""" |
|
|
|
if keep_cnn_gradients: |
|
raw_conv_feats = self.resnet(images) |
|
else: |
|
with torch.no_grad(): |
|
raw_conv_feats = self.resnet(images) |
|
features = self.linear(raw_conv_feats) |
|
features = features.view(features.size(0), features.size(1), -1) |
|
|
|
return features |
|
|
|
|
|
class EncoderLabels(nn.Module): |
|
def __init__(self, embed_size, num_classes, dropout=0.5, embed_weights=None, scale_grad=False): |
|
|
|
super(EncoderLabels, self).__init__() |
|
embeddinglayer = nn.Embedding(num_classes, embed_size, padding_idx=num_classes-1, scale_grad_by_freq=scale_grad) |
|
if embed_weights is not None: |
|
embeddinglayer.weight.data.copy_(embed_weights) |
|
self.pad_value = num_classes - 1 |
|
self.linear = embeddinglayer |
|
self.dropout = dropout |
|
self.embed_size = embed_size |
|
|
|
def forward(self, x, onehot_flag=False): |
|
|
|
if onehot_flag: |
|
embeddings = torch.matmul(x, self.linear.weight) |
|
else: |
|
embeddings = self.linear(x) |
|
|
|
embeddings = nn.functional.dropout(embeddings, p=self.dropout, training=self.training) |
|
embeddings = embeddings.permute(0, 2, 1).contiguous() |
|
|
|
return embeddings |
|
|