Database / utils.py
Lavlu118557's picture
Create utils.py
cb42bfd verified
import yaml
import json
import markdown
from fuzzywuzzy import fuzz, process
from typing import Dict, List, Any
import logging
def parse_yaml(yaml_text: str) -> Dict[str, Any]:
"""Parse YAML text and return dictionary"""
try:
return yaml.safe_load(yaml_text)
except yaml.YAMLError as e:
logging.error(f"YAML parsing error: {str(e)}")
raise e
def fuzzy_search(query: str, data: Dict[str, Any], threshold: int = 60) -> List[Dict[str, Any]]:
"""Perform fuzzy search on dictionary data"""
matches = []
if not isinstance(data, dict):
return matches
for key, value in data.items():
if isinstance(value, (str, int, float)):
value_str = str(value)
# Check fuzzy match for key
key_score = fuzz.partial_ratio(query.lower(), key.lower())
if key_score >= threshold:
matches.append({
'type': 'key',
'field': key,
'value': value_str,
'score': key_score
})
# Check fuzzy match for value
value_score = fuzz.partial_ratio(query.lower(), value_str.lower())
if value_score >= threshold:
matches.append({
'type': 'value',
'field': key,
'value': value_str,
'score': value_score
})
# Sort by score descending
matches.sort(key=lambda x: x['score'], reverse=True)
return matches
def render_markdown(text: str) -> str:
"""Render markdown text to HTML with emoji support"""
try:
md = markdown.Markdown(extensions=['extra', 'codehilite'])
html = md.convert(text)
# Basic emoji support - convert common emoji codes
emoji_map = {
':smile:': '😊',
':heart:': '❀️',
':thumbsup:': 'πŸ‘',
':thumbsdown:': 'πŸ‘Ž',
':fire:': 'πŸ”₯',
':rocket:': 'πŸš€',
':star:': '⭐',
':check:': 'βœ…',
':x:': '❌',
':warning:': '⚠️',
':info:': 'ℹ️',
':bulb:': 'πŸ’‘',
':tada:': 'πŸŽ‰'
}
for code, emoji in emoji_map.items():
html = html.replace(code, emoji)
return html
except Exception as e:
logging.error(f"Markdown rendering error: {str(e)}")
return text
def create_dynamic_table(table_name: str, schema: Dict[str, Any]) -> bool:
"""Create a dynamic table based on schema (for future implementation)"""
# This function can be expanded to create actual database tables
# For now, we use the generic DataRecord model with JSON storage
try:
logging.info(f"Creating dynamic table: {table_name} with schema: {schema}")
return True
except Exception as e:
logging.error(f"Error creating dynamic table: {str(e)}")
return False
def validate_schema(schema: Dict[str, Any]) -> bool:
"""Validate table schema format"""
if not isinstance(schema, dict):
return False
if 'fields' not in schema:
return False
if not isinstance(schema['fields'], list):
return False
for field in schema['fields']:
if not isinstance(field, dict):
return False
if 'name' not in field or 'type' not in field:
return False
return True
def process_pipeline_data(pipeline_config: Dict[str, Any], source_data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""Process data through a pipeline configuration"""
processed_data = source_data.copy()
try:
# Apply transformations based on pipeline config
transformations = pipeline_config.get('transformations', [])
for transformation in transformations:
transform_type = transformation.get('type')
if transform_type == 'filter':
condition = transformation.get('condition')
processed_data = [item for item in processed_data if eval_condition(item, condition)]
elif transform_type == 'map':
mapping = transformation.get('mapping')
for item in processed_data:
apply_mapping(item, mapping)
elif transform_type == 'sort':
field = transformation.get('field')
reverse = transformation.get('reverse', False)
processed_data.sort(key=lambda x: x.get(field, ''), reverse=reverse)
return processed_data
except Exception as e:
logging.error(f"Pipeline processing error: {str(e)}")
return source_data
def eval_condition(data: Dict[str, Any], condition: Dict[str, Any]) -> bool:
"""Evaluate a condition against data"""
try:
field = condition.get('field')
operator = condition.get('operator')
value = condition.get('value')
if not field or not operator:
return True
data_value = data.get(field)
if operator == 'equals':
return data_value == value
elif operator == 'contains':
if data_value is None or value is None:
return False
return str(value).lower() in str(data_value).lower()
elif operator == 'gt':
try:
return float(data_value or 0) > float(value or 0)
except (ValueError, TypeError):
return False
elif operator == 'lt':
try:
return float(data_value or 0) < float(value or 0)
except (ValueError, TypeError):
return False
return True
except Exception:
return True
def apply_mapping(data: Dict[str, Any], mapping: Dict[str, str]) -> None:
"""Apply field mapping to data"""
try:
for old_field, new_field in mapping.items():
if old_field in data:
data[new_field] = data.pop(old_field)
except Exception as e:
logging.error(f"Mapping error: {str(e)}")