import gradio as gr import base64 import os from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline from langchain.vectorstores import Chroma from langchain.embeddings import HuggingFaceEmbeddings from langchain.prompts import PromptTemplate from langchain.llms import HuggingFacePipeline from langchain.chains import RetrievalQA from langchain.document_loaders import TextLoader, DirectoryLoader from langchain.text_splitter import RecursiveCharacterTextSplitter # === Load and Embed Documents === loader = DirectoryLoader( "courses", glob="**/*.txt", loader_cls=TextLoader ) raw_docs = loader.load() text_splitter = RecursiveCharacterTextSplitter( chunk_size=700, chunk_overlap=100, separators=["\n###", "\n##", "\n\n", "\n", ".", " "] ) docs = text_splitter.split_documents(raw_docs) embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") vectorstore = Chroma.from_documents(docs, embedding=embedding_model) retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 4}) # === Prompt Template === custom_prompt_template = """ You are a helpful and knowledgeable course advisor at the University of Hertfordshire. Answer the student's question using only the information provided in the context below. If the context does not contain the answer, politely respond that the information is not available. Context: {context} Question: {question} Answer: """ prompt = PromptTemplate( input_variables=["context", "question"], template=custom_prompt_template ) # === Load Falcon Model === model_name = "tiiuae/Falcon3-1B-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True) generator = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=256, do_sample=False, temperature=0.1, top_p=0.9 ) llm = HuggingFacePipeline(pipeline=generator, model_kwargs={"return_full_text": False}) # === Setup Retrieval QA Chain === qa_chain = RetrievalQA.from_chain_type( llm=llm, retriever=retriever, chain_type="stuff", chain_type_kwargs={"prompt": prompt} ) # === Avatar and Crest === avatar_img = "images/UH.png" # Avatar shown beside bot messages logo = "images/UH Crest.png" # Crest image # # === Chat Logic with Course Memory === def chat_with_bot(message, history, course_state): lower_msg = message.lower() # Try to detect course from first question if "msc" in lower_msg: course_state = message.strip() # Store it for later use full_query = f"For the course '{course_state}': {message}" elif "change course to" in lower_msg: course_state = message.replace("change course to", "").strip() response = f"🔁 Course changed. Now answering based on: **{course_state}**" history.append((message, response)) return "", history, course_state elif course_state: full_query = f"For the course '{course_state}': {message}" else: full_query = message # No course memory yet try: raw_output = qa_chain.run(full_query) response = raw_output.split("Answer:")[-1].strip() response = response.replace("<|assistant|>", "").strip() except Exception as e: response = f"⚠️ An error occurred: {str(e)}" history.append((message, response)) return "", history, course_state # === Build Gradio UI === initial_message = ( "👋 Welcome! I'm your Assistant for the University of Hertfordshire.\n" "Struggling to find something on our website?\n" "Want to know anything about your MSc course?\n\n" "Simply ask and we can get started!\n\n" "⚠️ Please avoid sharing personal details in this chat.\n" "If personal details are ever needed, we’ll always ask for consent first." ) with gr.Blocks(title="🎓 UH Academic Advisor", css=""" .message.user { background-color: #d2e5ff !important; } """) as demo: # Convert crest image to base64 with open(logo, "rb") as image_file: encoded_string = base64.b64encode(image_file.read()).decode("utf-8") # Logo header gr.Markdown(f"""