import numpy as np import matplotlib.pyplot as plt import networkx as nx from memory_manager import retrieve_relevant def analyze_sentiment_topics(conversation: list) -> dict: """Return placeholder sentiment and key topics.""" sentiments = ["Positive", "Neutral", "Negative"] sentiment = np.random.choice(sentiments, p=[0.4, 0.4, 0.2]) topics = ["AI Ethics", "Policy", "Culture", "Technology", "Future"] return { "sentiment": sentiment, "topics": np.random.choice(topics, 3, replace=False).tolist() } def plot_participation(conversation: list, save_path: str) -> str: """Save agent participation bar chart.""" agents = [msg['agent'] for msg in conversation] counts = {agent: agents.count(agent) for agent in set(agents)} plt.figure() plt.bar(counts.keys(), counts.values()) plt.title("Agent Participation") plt.tight_layout() plt.savefig(save_path) return save_path def generate_knowledge_graph(conversation: list, save_path: str) -> str: """Save a simple directed graph of agent interactions.""" G = nx.DiGraph() # Add nodes for each unique agent agents = [msg['agent'] for msg in conversation] for agent in set(agents): G.add_node(agent) # Randomly connect nodes import random nodes = list(G.nodes) for _ in range(len(nodes) * 2): a, b = random.sample(nodes, 2) G.add_edge(a, b) plt.figure() pos = nx.spring_layout(G) nx.draw(G, pos, with_labels=True, node_size=1500) plt.title("Knowledge Graph") plt.savefig(save_path) return save_path