# app.py - DeepSeek Hexa-Agent Discussion Platform import gradio as gr import openai import threading import time import numpy as np import faiss import os import pickle from datetime import datetime import re import json import matplotlib.pyplot as plt import networkx as nx from reportlab.lib.pagesizes import letter from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer from reportlab.lib.styles import getSampleStyleSheet from functools import lru_cache import requests # === CONFIG === EMBEDDING_MODEL = "text-embedding-3-small" CHAT_MODEL = "gpt-4o" MEMORY_FILE = "memory.pkl" INDEX_FILE = "memory.index" openai.api_key = os.environ.get("OPENAI_API_KEY") # === EMBEDDING UTILS === @lru_cache(maxsize=500) def get_embedding(text, model=EMBEDDING_MODEL): """Cached embedding function for performance""" text = text.replace("\n", " ") try: response = openai.embeddings.create(input=[text], model=model) return response.data[0].embedding except AttributeError: response = openai.Embedding.create(input=[text], model=model) return response['data'][0]['embedding'] def cosine_similarity(vec1, vec2): vec1 = np.array(vec1) vec2 = np.array(vec2) return np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2)) # === MEMORY INITIALIZATION === memory_data = [] try: memory_index = faiss.read_index(INDEX_FILE) with open(MEMORY_FILE, "rb") as f: memory_data = pickle.load(f) except: memory_index = faiss.IndexFlatL2(1536) # === AGENT SYSTEM PROMPTS (Configurable) === AGENT_A_PROMPT = """You are the Discussion Initiator. Your role: 1. Introduce complex topics requiring multidisciplinary perspectives 2. Frame debates exploring tensions between values, ethics, and progress 3. Challenge assumptions while maintaining intellectual humility 4. Connect concepts across domains (science, ethics, policy, technology) 5. Elevate discussions beyond surface-level analysis""" AGENT_B_PROMPT = """You are the Critical Responder. Your role: 1. Provide counterpoints with evidence-based reasoning 2. Identify logical fallacies and cognitive biases in arguments 3. Analyze implications at different scales (individual, societal, global) 4. Consider second and third-order consequences 5. Balance idealism with practical constraints""" OVERSEER_PROMPT = """You are the Depth Guardian. Your role: 1. Ensure discussions maintain intellectual rigor 2. Intervene when conversations become superficial or repetitive 3. Highlight unexamined assumptions and blind spots 4. Introduce relevant frameworks (systems thinking, ethical paradigms) 5. Prompt consideration of marginalized perspectives 6. Synthesize key tensions and paradoxes""" OUTSIDER_PROMPT = """You are the Cross-Disciplinary Provocateur. Your role: 1. Introduce radical perspectives from unrelated fields 2. Challenge conventional wisdom with contrarian viewpoints 3. Surface historical precedents and analogies 4. Propose unconventional solutions to complex problems 5. Highlight overlooked connections and systemic relationships 6. Question the framing of the discussion itself""" CULTURAL_LENS_PROMPT = """You are the Cultural Perspective. Your role: 1. Provide viewpoints from diverse global cultures (Eastern, Western, Indigenous, African, etc.) 2. Highlight how cultural values shape perspectives on the topic 3. Identify cultural biases in arguments and assumptions 4. Share traditions and practices relevant to the discussion 5. Suggest culturally inclusive approaches to solutions 6. Bridge cultural divides through nuanced understanding 7. Consider post-colonial and decolonial perspectives""" JUDGE_PROMPT = """You are the Impartial Judge. Your role: 1. Periodically review the discussion and provide balanced rulings 2. Identify areas of agreement and unresolved tensions 3. Evaluate the strength of arguments from different perspectives 4. Highlight the most compelling insights and critical flaws 5. Suggest pathways toward resolution or further inquiry 6. Deliver rulings with clear justification and constructive guidance 7. Maintain objectivity while acknowledging valid points from all sides 8. Consider ethical implications and practical feasibility""" # === GLOBAL STATE === conversation = [] turn_count = 0 auto_mode = False current_topic = "" last_ruling_turn = 0 agent_params = { "Initiator": {"creativity": 0.7, "criticality": 0.5}, "Responder": {"creativity": 0.5, "criticality": 0.8}, "Guardian": {"creativity": 0.6, "criticality": 0.9}, "Provocateur": {"creativity": 0.9, "criticality": 0.7}, "Cultural": {"creativity": 0.7, "criticality": 0.6}, "Judge": {"creativity": 0.4, "criticality": 0.9} } # === ERROR-HANDLED API CALLS === def safe_chat_completion(system, messages, model=CHAT_MODEL, temperature=0.7, max_retries=3): """Robust API call with exponential backoff""" for attempt in range(max_retries): try: full_messages = [{"role": "system", "content": system}] full_messages.extend(messages) try: response = openai.chat.completions.create( model=model, messages=full_messages, temperature=temperature, max_tokens=300 ) return response.choices[0].message.content.strip() except AttributeError: response = openai.ChatCompletion.create( model=model, messages=full_messages, temperature=temperature, max_tokens=300 ) return response['choices'][0]['message']['content'].strip() except Exception as e: if attempt < max_retries - 1: wait_time = 2 ** attempt print(f"API error: {e}. Retrying in {wait_time} seconds...") time.sleep(wait_time) else: return f"⚠️ API Error: {str(e)}" return "⚠️ Max retries exceeded" # === MEMORY MANAGEMENT === def embed_and_store(text, agent=None): try: vec = get_embedding(text) memory_index.add(np.array([vec], dtype='float32')) memory_data.append({ "text": text, "timestamp": datetime.now().isoformat(), "agent": agent or "system", "topic": current_topic }) if len(memory_data) % 5 == 0: with open(MEMORY_FILE, "wb") as f: pickle.dump(memory_data, f) faiss.write_index(memory_index, INDEX_FILE) except Exception as e: print(f"Memory Error: {str(e)}") def retrieve_relevant_memory(query, k=3): """Retrieve relevant past discussions""" try: query_embedding = get_embedding(query) distances, indices = memory_index.search(np.array([query_embedding], dtype='float32'), k) relevant = [] for i, idx in enumerate(indices[0]): if idx < len(memory_data) and idx >= 0: relevant.append({ "text": memory_data[idx]['text'][:200] + "...", "topic": memory_data[idx].get('topic', 'Unknown'), "agent": memory_data[idx].get('agent', 'Unknown'), "similarity": 1 - distances[0][i] # Convert distance to similarity }) return relevant except Exception as e: print(f"Memory retrieval error: {str(e)}") return [] # === CONVERSATION UTILITIES === def format_convo(): return "\n".join([f"**{m['agent']}**: {m['text']}" for m in conversation]) def detect_superficiality(): """Detect shallow arguments using linguistic analysis""" if len(conversation) < 3: return False last_texts = [m['text'] for m in conversation[-3:]] # Linguistic markers of superficiality superficial_indicators = [ r"\b(obviously|clearly|everyone knows)\b", r"\b(simply|just|merely)\b", r"\b(always|never)\b", r"\b(I (think|believe|feel))\b", r"\b(without question|undeniably)\b" ] # Argument depth markers depth_markers = [ r"\b(however|conversely|paradoxically)\b", r"\b(evidence suggests|studies indicate)\b", r"\b(complex interplay|multifaceted nature)\b", r"\b(trade-off|tension between)\b", r"\b(historical precedent|comparative analysis)\b" ] superficial_count = 0 depth_count = 0 for text in last_texts: for pattern in superficial_indicators: if re.search(pattern, text, re.IGNORECASE): superficial_count += 1 for pattern in depth_markers: if re.search(pattern, text, re.IGNORECASE): depth_count += 1 return superficial_count > depth_count * 2 def batch_cosine_similarity(embeddings): """Efficient batch similarity calculation""" norms = np.linalg.norm(embeddings, axis=1) dot_matrix = np.dot(embeddings, embeddings.T) norm_matrix = np.outer(norms, norms) return dot_matrix / norm_matrix def detect_repetition(): """Check if recent messages are conceptually similar""" if len(conversation) < 4: return False recent = [m['text'] for m in conversation[-4:]] embeddings = [get_embedding(text) for text in recent] # Use batch processing for efficiency similarity_matrix = batch_cosine_similarity(np.array(embeddings)) # Check similarity between current and previous messages return any(similarity_matrix[-1][i] > 0.82 for i in range(len(embeddings)-1)) def detect_cultural_relevance(): """Check if cultural perspectives are needed""" if len(conversation) < 2: return False last_texts = " ".join([m['text'] for m in conversation[-2:]]) cultural_triggers = [ "society", "culture", "values", "tradition", "global", "western", "eastern", "indigenous", "community", "norms", "beliefs", "diversity", "equity", "identity", "heritage", "colonial" ] for trigger in cultural_triggers: if trigger in last_texts.lower(): return True return False def detect_judgment_opportunity(): """Identify when the discussion is ripe for judgment""" if len(conversation) < 8: return False # Check for unresolved tensions last_texts = " ".join([m['text'] for m in conversation[-4:]]) judgment_triggers = [ "tension", "dilemma", "paradox", "conflict", "disagreement", "opposing views", "unresolved", "contradiction", "impasse", "standoff" ] for trigger in judgment_triggers: if trigger in last_texts.lower(): return True return False # === AGENT FUNCTIONS === def generate_topic(): """Generate a complex discussion topic""" topic = safe_chat_completion( "Generate a complex discussion topic requiring multidisciplinary and multicultural analysis", [{"role": "user", "content": "Create a topic addressing tensions between technological progress, ethics, and cultural values"}] ) return topic.split(":")[-1].strip() if ":" in topic else topic def outsider_comment(): """Generate outsider perspective""" context = "\n".join([f"{m['agent']}: {m['text']}" for m in conversation[-4:]]) prompt = f"Conversation Context:\n{context}\n\nProvide your cross-disciplinary perspective:" # Apply agent parameters params = agent_params["Provocateur"] temp = 0.5 + params["creativity"] * 0.5 # Map to 0.5-1.0 range return safe_chat_completion( OUTSIDER_PROMPT, [{"role": "user", "content": prompt}], temperature=temp ) def cultural_perspective(): """Generate cultural diversity perspective""" context = "\n".join([f"{m['agent']}: {m['text']}" for m in conversation[-4:]]) prompt = f"Conversation Context:\n{context}\n\nProvide diverse cultural perspectives on this topic:" # Apply agent parameters params = agent_params["Cultural"] temp = 0.5 + params["creativity"] * 0.5 return safe_chat_completion( CULTURAL_LENS_PROMPT, [{"role": "user", "content": prompt}], temperature=temp ) def judge_ruling(): """Generate final judgment or ruling""" global last_ruling_turn # Create comprehensive context context = "\n\n".join([ f"Discussion Topic: {current_topic}", "Key Arguments:", *[f"- {m['agent']}: {m['text']}" for m in conversation[-8:]] ]) prompt = f"""After reviewing this discussion, provide your impartial judgment: {context} Your ruling should: 1. Identify areas of agreement and unresolved tensions 2. Evaluate the strength of key arguments 3. Highlight the most compelling insights 4. Suggest pathways toward resolution 5. Consider ethical and practical implications 6. Provide constructive guidance for next steps""" # Apply agent parameters params = agent_params["Judge"] temp = 0.3 + params["criticality"] * 0.4 # More critical = lower temperature ruling = safe_chat_completion( JUDGE_PROMPT, [{"role": "user", "content": prompt}], temperature=temp ) last_ruling_turn = turn_count return ruling # === CORE CONVERSATION FLOW === def step(topic_input=""): global conversation, turn_count, current_topic, last_ruling_turn # Initialize new discussion if not conversation: current_topic = topic_input or generate_topic() # Retrieve relevant memory memory_context = retrieve_relevant_memory(current_topic) context_str = "" if memory_context: context_str = "\n\nRelevant past discussions:\n" + "\n".join( [f"- {item['agent']} on '{item['topic']}': {item['text']}" for item in memory_context] ) msg = safe_chat_completion( AGENT_A_PROMPT, [{"role": "user", "content": f"Initiate a deep discussion on: {current_topic}{context_str}"}], temperature=0.5 + agent_params["Initiator"]["creativity"] * 0.5 ) conversation.append({"agent": "💡 Initiator", "text": msg}) embed_and_store(msg, "Initiator") turn_count = 1 last_ruling_turn = 0 return format_convo(), "", "", "", "", current_topic, turn_count, "" # Critical Responder engages last_msg = conversation[-1]['text'] b_msg = safe_chat_completion( AGENT_B_PROMPT, [{"role": "user", "content": f"Topic: {current_topic}\n\nLast statement: {last_msg}"}], temperature=0.4 + agent_params["Responder"]["criticality"] * 0.4 ) conversation.append({"agent": "🔍 Responder", "text": b_msg}) embed_and_store(b_msg, "Responder") # Initiator counters a_msg = safe_chat_completion( AGENT_A_PROMPT, [{"role": "user", "content": f"Topic: {current_topic}\n\nCritical response: {b_msg}"}], temperature=0.5 + agent_params["Initiator"]["creativity"] * 0.5 ) conversation.append({"agent": "💡 Initiator", "text": a_msg}) embed_and_store(a_msg, "Initiator") # Overseer intervention intervention = "" if turn_count % 3 == 0 or detect_repetition() or detect_superficiality(): context = "\n".join([m['text'] for m in conversation[-4:]]) prompt = f"Topic: {current_topic}\n\nDiscussion Context:\n{context}\n\nDeepen the analysis:" intervention = safe_chat_completion( OVERSEER_PROMPT, [{"role": "user", "content": prompt}], temperature=0.5 + agent_params["Guardian"]["criticality"] * 0.4 ) conversation.append({"agent": "⚖️ Depth Guardian", "text": intervention}) embed_and_store(intervention, "Overseer") # Outsider commentary outsider_msg = "" if turn_count % 4 == 0 or "paradox" in last_msg.lower(): outsider_msg = outsider_comment() conversation.append({"agent": "🌐 Provocateur", "text": outsider_msg}) embed_and_store(outsider_msg, "Outsider") # Cultural perspective cultural_msg = "" if turn_count % 5 == 0 or detect_cultural_relevance(): cultural_msg = cultural_perspective() conversation.append({"agent": "🌍 Cultural Lens", "text": cultural_msg}) embed_and_store(cultural_msg, "Cultural") # Judge ruling judge_msg = "" ruling_interval = 6 # Turns between rulings if (turn_count - last_ruling_turn >= ruling_interval and (turn_count % ruling_interval == 0 or detect_judgment_opportunity())): judge_msg = judge_ruling() conversation.append({"agent": "⚖️ Judge", "text": judge_msg}) embed_and_store(judge_msg, "Judge") turn_count += 1 return format_convo(), intervention, outsider_msg, cultural_msg, judge_msg, current_topic, turn_count, "" # === ANALYSIS & VISUALIZATION === def analyze_conversation(): """Generate insights about the discussion""" # Count agent contributions agent_counts = {} for msg in conversation: agent = msg['agent'].split()[0] # Remove emoji agent_counts[agent] = agent_counts.get(agent, 0) + 1 # Sentiment analysis sentiment_prompt = f"Analyze overall sentiment of this discussion:\n{format_convo()}" sentiment = safe_chat_completion( "You are a sentiment analysis expert. Provide a brief assessment of the discussion tone.", [{"role": "user", "content": sentiment_prompt}] ) # Topic extraction topic_prompt = f"Extract key topics from this discussion:\n{format_convo()}" topics = safe_chat_completion( "You are a topic extraction expert. List the top 5 topics as a JSON array.", [{"role": "user", "content": topic_prompt}] ) try: topics = json.loads(topics) except: topics = ["Topic extraction failed"] return { "agents": list(agent_counts.keys()), "counts": [agent_counts.get(a, 0) for a in list(agent_counts.keys())], "topics": topics, "sentiment": sentiment } def generate_knowledge_graph(): """Create a knowledge graph of discussion concepts""" # Extract entities and relationships extraction_prompt = f""" Analyze this discussion and extract: 1. Key concepts (nouns, important terms) 2. Relationships between concepts (verb phrases) Discussion: {format_convo()} Return as JSON: {{"concepts": ["list", "of", "concepts"], "relationships": [["concept1", "relationship", "concept2"]]}} """ try: graph_data = safe_chat_completion( "You are a knowledge graph extraction expert.", [{"role": "user", "content": extraction_prompt}] ) graph_data = json.loads(graph_data) # Create graph visualization G = nx.DiGraph() G.add_nodes_from(graph_data["concepts"]) for rel in graph_data["relationships"]: if len(rel) == 3: G.add_edge(rel[0], rel[2], label=rel[1]) plt.figure(figsize=(10, 8)) pos = nx.spring_layout(G, seed=42) nx.draw(G, pos, with_labels=True, node_size=2000, node_color="skyblue", font_size=10) edge_labels = nx.get_edge_attributes(G, 'label') nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels) plt.title("Discussion Knowledge Graph") plt.savefig("knowledge_graph.png") return "knowledge_graph.png" except Exception as e: print(f"Graph error: {str(e)}") return None # === EXPORT FUNCTIONS === def export_pdf_report(): """Generate PDF report of discussion""" filename = f"discussion_report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.pdf" doc = SimpleDocTemplate(filename, pagesize=letter) styles = getSampleStyleSheet() story = [] # Title story.append(Paragraph(f"Discussion Report: {current_topic}", styles['Title'])) story.append(Spacer(1, 12)) # Summary analysis = analyze_conversation() story.append(Paragraph("Discussion Summary", styles['Heading2'])) story.append(Paragraph(f"Turn Count: {turn_count}", styles['BodyText'])) story.append(Paragraph(f"Sentiment: {analysis['sentiment']}", styles['BodyText'])) story.append(Spacer(1, 12)) # Key Topics story.append(Paragraph("Key Topics", styles['Heading2'])) for topic in analysis['topics']: story.append(Paragraph(f"- {topic}", styles['BodyText'])) story.append(Spacer(1, 12)) # Full Conversation story.append(Paragraph("Full Discussion", styles['Heading2'])) for msg in conversation: story.append(Paragraph(f"{msg['agent']}: {msg['text']}", styles['BodyText'])) story.append(Spacer(1, 6)) doc.build(story) return filename def export_json_data(): """Export conversation as JSON""" filename = f"discussion_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json" with open(filename, 'w') as f: json.dump({ "topic": current_topic, "turns": turn_count, "conversation": conversation, "analysis": analyze_conversation() }, f, indent=2) return filename def export_text_transcript(): """Export as plain text""" filename = f"transcript_{datetime.now().strftime('%Y%m%d_%H%M%S')}.txt" with open(filename, 'w') as f: f.write(f"Discussion Topic: {current_topic}\n\n") f.write("Participants:\n") agents = set(msg['agent'] for msg in conversation) for agent in agents: f.write(f"- {agent}\n") f.write("\nConversation:\n") for msg in conversation: f.write(f"{msg['agent']}: {msg['text']}\n\n") return filename # === INTEGRATION FUNCTIONS === def send_to_webhook(url): """Send discussion data to external webhook""" try: payload = { "topic": current_topic, "turns": turn_count, "conversation": conversation, "timestamp": datetime.now().isoformat() } response = requests.post(url, json=payload, timeout=10) if response.status_code == 200: return "✅ Data sent successfully!" else: return f"⚠️ Error {response.status_code}: {response.text}" except Exception as e: return f"⚠️ Connection error: {str(e)}" # ... [Keep all the imports, config, and function definitions above] ... # === GRADIO UI === with gr.Blocks(theme=gr.themes.Soft(), title="DeepSeek Discussion Platform") as demo: gr.Markdown("# 🧠 DeepSeek Hexa-Agent Discussion System") gr.Markdown("### AI-Powered Complex Discourse Analysis") # Status panel with gr.Row(): turn_counter = gr.Number(label="Turn Count", value=0, interactive=False) topic_display = gr.Textbox(label="Current Topic", interactive=False, lines=2) agent_status = gr.Textbox(label="Active Agents", value="💡 Initiator, 🔍 Responder", interactive=False) # Tabbed interface with gr.Tab("Live Discussion"): convo_display = gr.HTML( value="