Spaces:
Running
on
Zero
Running
on
Zero
File size: 60,502 Bytes
f460ce6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 |
from PIL import Image
from torchvision import transforms
import torchvision.transforms.functional as TF
import random
import torch
import os
from datasets import load_dataset
import numpy as np
import json
Image.MAX_IMAGE_PIXELS = None
def collate_fn(examples):
if examples[0].get("cond_pixel_values") is not None:
cond_pixel_values = torch.stack([example["cond_pixel_values"] for example in examples])
cond_pixel_values = cond_pixel_values.to(memory_format=torch.contiguous_format).float()
else:
cond_pixel_values = None
if examples[0].get("source_pixel_values") is not None:
source_pixel_values = torch.stack([example["source_pixel_values"] for example in examples])
source_pixel_values = source_pixel_values.to(memory_format=torch.contiguous_format).float()
else:
source_pixel_values = None
target_pixel_values = torch.stack([example["pixel_values"] for example in examples])
target_pixel_values = target_pixel_values.to(memory_format=torch.contiguous_format).float()
token_ids_clip = torch.stack([example["token_ids_clip"] for example in examples])
token_ids_t5 = torch.stack([example["token_ids_t5"] for example in examples])
mask_values = None
if examples[0].get("mask_values") is not None:
mask_values = torch.stack([example["mask_values"] for example in examples])
mask_values = mask_values.to(memory_format=torch.contiguous_format).float()
return {
"cond_pixel_values": cond_pixel_values,
"source_pixel_values": source_pixel_values,
"pixel_values": target_pixel_values,
"text_ids_1": token_ids_clip,
"text_ids_2": token_ids_t5,
"mask_values": mask_values,
}
def _resolve_jsonl(path_str: str):
if path_str is None or str(path_str).strip() == "":
raise ValueError("train_data_jsonl is empty. Please set --train_data_jsonl to a JSON/JSONL file or a folder.")
if os.path.isdir(path_str):
files = [
os.path.join(path_str, f)
for f in os.listdir(path_str)
if f.lower().endswith((".jsonl", ".json"))
]
if not files:
raise ValueError(f"No .json or .jsonl files found under directory: {path_str}")
return {"train": sorted(files)}
if not os.path.exists(path_str):
raise FileNotFoundError(f"train_data_jsonl not found: {path_str}")
return {"train": [path_str]}
def _tokenize(tokenizers, caption: str):
tokenizer_clip = tokenizers[0]
tokenizer_t5 = tokenizers[1]
text_inputs_clip = tokenizer_clip(
[caption], padding="max_length", max_length=77, truncation=True, return_tensors="pt"
)
text_inputs_t5 = tokenizer_t5(
[caption], padding="max_length", max_length=128, truncation=True, return_tensors="pt"
)
return text_inputs_clip.input_ids[0], text_inputs_t5.input_ids[0]
def _prepend_caption(caption: str) -> str:
"""Prepend instruction and keep only instruction with 20% prob."""
instruction = "Fill in the white region naturally and adapt the foreground into the background. Fix the perspective of the foreground object if necessary."
if random.random() < 0.2:
return instruction
caption = caption or ""
if caption.strip():
return f"{instruction} {caption.strip()}"
return instruction
def _color_augment(pil_img: Image.Image) -> Image.Image:
brightness = random.uniform(0.8, 1.2)
contrast = random.uniform(0.8, 1.2)
saturation = random.uniform(0.8, 1.2)
hue = random.uniform(-0.05, 0.05)
img = TF.adjust_brightness(pil_img, brightness)
img = TF.adjust_contrast(img, contrast)
img = TF.adjust_saturation(img, saturation)
img = TF.adjust_hue(img, hue)
return img
def _dilate_mask(mask_bin: np.ndarray, min_px: int = 5, max_px: int = 100) -> np.ndarray:
"""Grow binary mask by a random radius in [min_px, max_px]. Expects values {0,1}."""
import cv2
radius = int(max(min_px, min(max_px, random.randint(min_px, max_px))))
if radius <= 0:
return mask_bin.astype(np.uint8)
ksize = 2 * radius + 1
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (ksize, ksize))
grown = cv2.dilate(mask_bin.astype(np.uint8), kernel, iterations=1)
return (grown > 0).astype(np.uint8)
def _random_point_inside_mask(mask_bin: np.ndarray) -> tuple:
ys, xs = np.where(mask_bin > 0)
if len(xs) == 0:
h, w = mask_bin.shape
return w // 2, h // 2
idx = random.randrange(len(xs))
return int(xs[idx]), int(ys[idx])
def _bbox_containing_mask(mask_bin: np.ndarray, img_w: int, img_h: int) -> tuple:
ys, xs = np.where(mask_bin > 0)
if len(xs) == 0:
return 0, 0, img_w - 1, img_h - 1
x1, x2 = int(xs.min()), int(xs.max())
y1, y2 = int(ys.min()), int(ys.max())
# Random padding
max_pad = int(0.25 * min(img_w, img_h))
pad_x1 = random.randint(0, max_pad)
pad_x2 = random.randint(0, max_pad)
pad_y1 = random.randint(0, max_pad)
pad_y2 = random.randint(0, max_pad)
x1 = max(0, x1 - pad_x1)
y1 = max(0, y1 - pad_y1)
x2 = min(img_w - 1, x2 + pad_x2)
y2 = min(img_h - 1, y2 + pad_y2)
return x1, y1, x2, y2
def _constrained_random_mask(mask_bin: np.ndarray, image_h: int, image_w: int, aug_prob: float = 0.7) -> np.ndarray:
"""Generate random mask whose box contains or starts in m_p, and brush strokes start inside m_p.
Returns binary 0/1 array of shape (H,W).
"""
import cv2
if random.random() >= aug_prob:
return np.zeros((image_h, image_w), dtype=np.uint8)
# Scale similar to reference
ref_size = 1024
scale_factor = max(1.0, min(image_h, image_w) / float(ref_size))
out = np.zeros((image_h, image_w), dtype=np.uint8)
# Choose exactly one augmentation: bbox OR stroke
if random.random() < 0.2:
# BBox augmentation: draw N boxes (randomized), first box often contains mask
num_boxes = random.randint(1, 6)
for b in range(num_boxes):
if b == 0 and random.random() < 0.5:
x1, y1, x2, y2 = _bbox_containing_mask(mask_bin, image_w, image_h)
else:
sx, sy = _random_point_inside_mask(mask_bin)
max_w = int(500 * scale_factor)
min_w = int(100 * scale_factor)
bw = random.randint(max(1, min_w), max(2, max_w))
bh = random.randint(max(1, min_w), max(2, max_w))
x1 = max(0, sx - random.randint(0, bw))
y1 = max(0, sy - random.randint(0, bh))
x2 = min(image_w - 1, x1 + bw)
y2 = min(image_h - 1, y1 + bh)
out[y1:y2 + 1, x1:x2 + 1] = 1
else:
# Stroke augmentation: draw N strokes starting inside mask
num_strokes = random.randint(1, 6)
for _ in range(num_strokes):
num_points = random.randint(10, 30)
stroke_width = random.randint(max(1, int(100 * scale_factor)), max(2, int(400 * scale_factor)))
max_offset = max(1, int(100 * scale_factor))
start_x, start_y = _random_point_inside_mask(mask_bin)
px, py = start_x, start_y
for _ in range(num_points):
dx = random.randint(-max_offset, max_offset)
dy = random.randint(-max_offset, max_offset)
nx = int(np.clip(px + dx, 0, image_w - 1))
ny = int(np.clip(py + dy, 0, image_h - 1))
cv2.line(out, (px, py), (nx, ny), 1, stroke_width)
px, py = nx, ny
return (out > 0).astype(np.uint8)
def make_placement_dataset_subjects(args, tokenizers, accelerator=None, base_dir=None):
"""
Dataset for JSONL with fields:
- generated_image_path: relative to base_dir (target image with object)
- mask_path: relative to base_dir (mask of object)
- generated_width, generated_height: image dimensions
- final_prompt: caption
- relight_images: list of {mode, path} for relighted versions
source image construction:
- background is target_image with a hole punched by grown mask
- foreground is randomly selected from relight_images with weights
- includes perspective transformation (moved from interactive dataset)
Args:
base_dir: Base directory for resolving relative paths. If None, uses args.placement_base_dir.
"""
if base_dir is None:
base_dir = getattr(args, "placement_base_dir")
data_files = _resolve_jsonl(getattr(args, "placement_data_jsonl", None))
file_paths = data_files.get("train", [])
records = []
for p in file_paths:
with open(p, "r", encoding="utf-8") as f:
for line in f:
line = line.strip()
if not line:
continue
try:
obj = json.loads(line)
except Exception:
try:
obj = json.loads(line.rstrip(","))
except Exception:
continue
# Keep only fields we need
pruned = {
"generated_image_path": obj.get("generated_image_path"),
"mask_path": obj.get("mask_path"),
"generated_width": obj.get("generated_width"),
"generated_height": obj.get("generated_height"),
"final_prompt": obj.get("final_prompt"),
"relight_images": obj.get("relight_images"),
}
records.append(pruned)
size = int(getattr(args, "cond_size", 512))
to_tensor_and_norm = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
])
class PlacementDataset(torch.utils.data.Dataset):
def __init__(self, hf_ds, base_dir):
self.ds = hf_ds
self.base_dir = base_dir
def __len__(self):
# Triplicate sampling per record
return len(self.ds)
def __getitem__(self, idx):
rec = self.ds[idx % len(self.ds)]
t_rel = rec.get("generated_image_path", "")
m_rel = rec.get("mask_path", "")
# Both are relative paths
t_p = os.path.join(self.base_dir, t_rel)
m_p = os.path.join(self.base_dir, m_rel)
import cv2
mask_loaded = cv2.imread(m_p, cv2.IMREAD_GRAYSCALE)
if mask_loaded is None:
raise ValueError(f"Failed to read mask: {m_p}")
tgt_img = Image.open(t_p).convert("RGB")
fw = int(rec.get("generated_width", tgt_img.width))
fh = int(rec.get("generated_height", tgt_img.height))
tgt_img = tgt_img.resize((fw, fh), resample=Image.BILINEAR)
mask_img = Image.fromarray(mask_loaded.astype(np.uint8)).convert("L").resize((fw, fh), Image.NEAREST)
target_tensor = to_tensor_and_norm(tgt_img)
# Binary mask at final_size
mask_np = np.array(mask_img)
mask_bin = (mask_np > 127).astype(np.uint8)
# 1) Grow mask by random 50-100 pixels
grown_mask = _dilate_mask(mask_bin, 50, 200)
# 2) Optional random augmentation mask constrained by mask
rand_mask = _constrained_random_mask(mask_bin, fh, fw, 7)
# 3) Final union mask
union_mask = np.clip(grown_mask | rand_mask, 0, 1).astype(np.uint8)
tgt_np = np.array(tgt_img)
# Helper: choose relighted image from relight_images with weights
def _choose_relight_image(rec, width, height):
relight_list = rec.get("relight_images") or []
# Build map mode -> path
mode_to_path = {}
for it in relight_list:
try:
mode = str(it.get("mode", "")).strip().lower()
path = it.get("path")
except Exception:
continue
if not mode or not path:
continue
mode_to_path[mode] = path
weighted_order = [
("grayscale", 0.5),
("low", 0.3),
("high", 0.2),
]
# Filter to available
available = [(m, w) for (m, w) in weighted_order if m in mode_to_path]
chosen_path = None
if available:
rnd = random.random()
cum = 0.0
total_w = sum(w for _, w in available)
for m, w in available:
cum += w / total_w
if rnd <= cum:
chosen_path = mode_to_path.get(m)
break
if chosen_path is None:
chosen_path = mode_to_path.get(available[-1][0])
else:
# Fallback to any provided path
if mode_to_path:
chosen_path = next(iter(mode_to_path.values()))
# Open chosen image
if chosen_path is not None:
try:
# Paths are relative to base_dir
open_path = os.path.join(self.base_dir, chosen_path)
img = Image.open(open_path).convert("RGB").resize((width, height), resample=Image.BILINEAR)
return img
except Exception:
pass
# Fallback: return target image
return Image.open(t_p).convert("RGB").resize((width, height), resample=Image.BILINEAR)
# Choose base image with probabilities:
# 20%: original target, 20%: color augment(target), 60%: relight augment
rsel = random.random()
if rsel < 0.2:
base_img = tgt_img
elif rsel < 0.4:
base_img = _color_augment(tgt_img)
else:
base_img = _choose_relight_image(rec, fw, fh)
base_np = np.array(base_img)
fore_np = base_np.copy()
# Random perspective augmentation (50%): apply to foreground ROI (mask bbox) and its mask only
perspective_applied = False
roi_update = None
paste_mask_bool = mask_bin.astype(bool)
if random.random() < 0.5:
try:
import cv2
ys, xs = np.where(mask_bin > 0)
if len(xs) > 0 and len(ys) > 0:
x1, x2 = int(xs.min()), int(xs.max())
y1, y2 = int(ys.min()), int(ys.max())
if x2 > x1 and y2 > y1:
roi = base_np[y1:y2 + 1, x1:x2 + 1]
roi_mask = mask_bin[y1:y2 + 1, x1:x2 + 1]
bh, bw = roi.shape[:2]
# Random perturbation relative to ROI size
max_ratio = random.uniform(0.1, 0.3)
dx = bw * max_ratio
dy = bh * max_ratio
src = np.float32([[0, 0], [bw - 1, 0], [bw - 1, bh - 1], [0, bh - 1]])
dst = np.float32([
[np.clip(random.uniform(-dx, dx), 0, bw - 1), np.clip(random.uniform(-dy, dy), 0, bh - 1)],
[np.clip(bw - 1 + random.uniform(-dx, dx), 0, bw - 1), np.clip(random.uniform(-dy, dy), 0, bh - 1)],
[np.clip(bw - 1 + random.uniform(-dx, dx), 0, bw - 1), np.clip(bh - 1 + random.uniform(-dy, dy), 0, bh - 1)],
[np.clip(random.uniform(-dx, dx), 0, bw - 1), np.clip(bh - 1 + random.uniform(-dy, dy), 0, bh - 1)],
])
M = cv2.getPerspectiveTransform(src, dst)
warped_roi = cv2.warpPerspective(roi, M, (bw, bh), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REFLECT101)
warped_mask_roi = cv2.warpPerspective((roi_mask.astype(np.uint8) * 255), M, (bw, bh), flags=cv2.INTER_NEAREST, borderMode=cv2.BORDER_CONSTANT, borderValue=0) > 127
# Build a fresh foreground canvas
fore_np = np.zeros_like(base_np)
h_warp, w_warp = warped_mask_roi.shape
y2c = y1 + h_warp
x2c = x1 + w_warp
fore_np[y1:y2c, x1:x2c][warped_mask_roi] = warped_roi[warped_mask_roi]
paste_mask_bool = np.zeros_like(mask_bin, dtype=bool)
paste_mask_bool[y1:y2c, x1:x2c] = warped_mask_roi
roi_update = (x1, y1, h_warp, w_warp, warped_mask_roi)
perspective_applied = True
except Exception:
perspective_applied = False
paste_mask_bool = mask_bin.astype(bool)
fore_np = base_np
# Optional: simulate resolution artifacts
if random.random() < 0.7:
ys, xs = np.where(paste_mask_bool)
if len(xs) > 0 and len(ys) > 0:
x1, x2 = int(xs.min()), int(xs.max())
y1, y2 = int(ys.min()), int(ys.max())
if x2 > x1 and y2 > y1:
crop = fore_np[y1:y2 + 1, x1:x2 + 1]
ch, cw = crop.shape[:2]
scale = random.uniform(0.15, 0.9)
dw = max(1, int(cw * scale))
dh = max(1, int(ch * scale))
try:
small = Image.fromarray(crop.astype(np.uint8)).resize((dw, dh), Image.BICUBIC)
back = small.resize((cw, ch), Image.BICUBIC)
crop_blurred = np.array(back).astype(np.uint8)
fore_np[y1:y2 + 1, x1:x2 + 1] = crop_blurred
except Exception:
pass
# Build masked target and compose
union_mask_for_target = union_mask.copy()
if roi_update is not None:
rx, ry, rh, rw, warped_mask_roi = roi_update
um_roi = union_mask_for_target[ry:ry + rh, rx:rx + rw]
union_mask_for_target[ry:ry + rh, rx:rx + rw] = np.clip(um_roi | warped_mask_roi.astype(np.uint8), 0, 1)
masked_t_np = tgt_np.copy()
masked_t_np[union_mask_for_target.astype(bool)] = 255
composed_np = masked_t_np.copy()
m_fore = paste_mask_bool
composed_np[m_fore] = fore_np[m_fore]
# Build tensors
source_tensor = to_tensor_and_norm(Image.fromarray(composed_np.astype(np.uint8)))
mask_tensor = torch.from_numpy(union_mask.astype(np.float32)).unsqueeze(0)
# Caption: prepend instruction
cap_orig = rec.get("final_prompt", "") or ""
# Handle list format in final_prompt
if isinstance(cap_orig, list) and len(cap_orig) > 0:
cap_orig = cap_orig[0] if isinstance(cap_orig[0], str) else str(cap_orig[0])
cap = _prepend_caption(cap_orig)
if perspective_applied:
cap = f"{cap} Fix the perspective if necessary."
ids1, ids2 = _tokenize(tokenizers, cap)
return {
"source_pixel_values": source_tensor,
"pixel_values": target_tensor,
"token_ids_clip": ids1,
"token_ids_t5": ids2,
"mask_values": mask_tensor,
}
return PlacementDataset(records, base_dir)
def make_interactive_dataset_subjects(args, tokenizers, accelerator=None, base_dir=None):
"""
Dataset for JSONL with fields:
- input_path: relative to base_dir (target image)
- output_path: absolute path to image with foreground
- mask_after_completion: absolute path to mask
- img_width, img_height: resize dimensions
- prompt: caption
source image construction:
- background is target_image with a hole punched by grown `mask_after_completion`
- foreground is from `output_path` image, pasted using original `mask_after_completion`
- 50% chance to color augment the foreground source
- NO perspective transform (moved to placement dataset)
Args:
base_dir: Base directory for resolving relative paths. If None, uses args.interactive_base_dir.
"""
if base_dir is None:
base_dir = getattr(args, "interactive_base_dir")
data_files = _resolve_jsonl(getattr(args, "train_data_jsonl", None))
file_paths = data_files.get("train", [])
records = []
for p in file_paths:
with open(p, "r", encoding="utf-8") as f:
for line in f:
line = line.strip()
if not line:
continue
try:
obj = json.loads(line)
except Exception:
# Best-effort: strip any trailing commas and retry
try:
obj = json.loads(line.rstrip(","))
except Exception:
continue
# Keep only fields we actually need to avoid schema issues
pruned = {
"input_path": obj.get("input_path"),
"output_path": obj.get("output_path"),
"mask_after_completion": obj.get("mask_after_completion"),
"img_width": obj.get("img_width"),
"img_height": obj.get("img_height"),
"prompt": obj.get("prompt"),
# New optional fields
"generated_images": obj.get("generated_images"),
"positive_prompt_used": obj.get("positive_prompt_used"),
"negative_caption_used": obj.get("negative_caption_used"),
}
records.append(pruned)
size = int(getattr(args, "cond_size", 512))
to_tensor_and_norm = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
])
class SubjectsDataset(torch.utils.data.Dataset):
def __init__(self, hf_ds, base_dir):
self.ds = hf_ds
self.base_dir = base_dir
def __len__(self):
# Triplicate sampling per record
return len(self.ds)
def __getitem__(self, idx):
rec = self.ds[idx % len(self.ds)]
t_rel = rec.get("input_path", "")
foreground_p = rec.get("output_path", "")
m_abs = rec.get("mask_after_completion", "")
if not os.path.isabs(m_abs):
raise ValueError("mask_after_completion must be absolute")
if not os.path.isabs(foreground_p):
raise ValueError("output_path must be absolute")
t_p = os.path.join(self.base_dir, t_rel)
m_p = m_abs
import cv2
mask_loaded = cv2.imread(m_p, cv2.IMREAD_GRAYSCALE)
if mask_loaded is None:
raise ValueError(f"Failed to read mask: {m_p}")
tgt_img = Image.open(t_p).convert("RGB")
foreground_source_img = Image.open(foreground_p).convert("RGB")
fw = int(rec.get("img_width", tgt_img.width))
fh = int(rec.get("img_height", tgt_img.height))
tgt_img = tgt_img.resize((fw, fh), resample=Image.BILINEAR)
foreground_source_img = foreground_source_img.resize((fw, fh), resample=Image.BILINEAR)
mask_img = Image.fromarray(mask_loaded.astype(np.uint8)).convert("L").resize((fw, fh), Image.NEAREST)
# Ensure PIL images to tensors for outputs based on new logic later
target_tensor = to_tensor_and_norm(tgt_img)
# Binary mask at final_size
mask_np = np.array(mask_img)
mask_bin = (mask_np > 127).astype(np.uint8)
# 1) Grow m_p by random 50-100 pixels
grown_mask = _dilate_mask(mask_bin, 50, 200)
# 2) Optional random augmentation mask constrained by m_p
rand_mask = _constrained_random_mask(mask_bin, fh, fw, aug_prob=0.7)
# 3) Final union mask
union_mask = np.clip(grown_mask | rand_mask, 0, 1).astype(np.uint8)
tgt_np = np.array(tgt_img)
# Helper: choose relighted image from generated_images with weights
def _choose_relight_image(rec, default_img, width, height):
gen_list = rec.get("generated_images") or []
# Build map mode -> path
mode_to_path = {}
for it in gen_list:
try:
mode = str(it.get("mode", "")).strip().lower()
path = it.get("path")
except Exception:
continue
if not mode or not path:
continue
mode_to_path[mode] = path
# Weighted selection among available modes
weighted_order = [
("grayscale", 0.5),
("low", 0.3),
("high", 0.2),
]
# Filter to available
available = [(m, w) for (m, w) in weighted_order if m in mode_to_path]
chosen_path = None
if available:
rnd = random.random()
cum = 0.0
total_w = sum(w for _, w in available)
for m, w in available:
cum += w / total_w
if rnd <= cum:
chosen_path = mode_to_path.get(m)
break
if chosen_path is None:
chosen_path = mode_to_path.get(available[-1][0])
else:
# Fallback to any provided path
if mode_to_path:
chosen_path = next(iter(mode_to_path.values()))
# Open chosen image
if chosen_path is not None:
try:
open_path = chosen_path
# generated paths are typically absolute; if not, use as-is
img = Image.open(open_path).convert("RGB").resize((width, height), resample=Image.BILINEAR)
return img
except Exception:
pass
return default_img
# 5) Choose base image with probabilities:
# 20%: original, 20%: color augment(original), 60%: relight augment
rsel = random.random()
if rsel < 0.2:
base_img = foreground_source_img
elif rsel < 0.4:
base_img = _color_augment(foreground_source_img)
else:
base_img = _choose_relight_image(rec, foreground_source_img, fw, fh)
base_np = np.array(base_img)
# 5.1) Random perspective augmentation (20%): apply to foreground ROI (mask bbox) and its mask only
perspective_applied = False
roi_update = None
paste_mask_bool = mask_bin.astype(bool)
if random.random() < 0.5:
try:
import cv2
ys, xs = np.where(mask_bin > 0)
if len(xs) > 0 and len(ys) > 0:
x1, x2 = int(xs.min()), int(xs.max())
y1, y2 = int(ys.min()), int(ys.max())
if x2 > x1 and y2 > y1:
roi = base_np[y1:y2 + 1, x1:x2 + 1]
roi_mask = mask_bin[y1:y2 + 1, x1:x2 + 1]
bh, bw = roi.shape[:2]
# Random perturbation relative to ROI size
max_ratio = random.uniform(0.1, 0.3)
dx = bw * max_ratio
dy = bh * max_ratio
src = np.float32([[0, 0], [bw - 1, 0], [bw - 1, bh - 1], [0, bh - 1]])
dst = np.float32([
[np.clip(random.uniform(-dx, dx), 0, bw - 1), np.clip(random.uniform(-dy, dy), 0, bh - 1)],
[np.clip(bw - 1 + random.uniform(-dx, dx), 0, bw - 1), np.clip(random.uniform(-dy, dy), 0, bh - 1)],
[np.clip(bw - 1 + random.uniform(-dx, dx), 0, bw - 1), np.clip(bh - 1 + random.uniform(-dy, dy), 0, bh - 1)],
[np.clip(random.uniform(-dx, dx), 0, bw - 1), np.clip(bh - 1 + random.uniform(-dy, dy), 0, bh - 1)],
])
M = cv2.getPerspectiveTransform(src, dst)
warped_roi = cv2.warpPerspective(roi, M, (bw, bh), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REFLECT101)
warped_mask_roi = cv2.warpPerspective((roi_mask.astype(np.uint8) * 255), M, (bw, bh), flags=cv2.INTER_NEAREST, borderMode=cv2.BORDER_CONSTANT, borderValue=0) > 127
# Build a fresh foreground canvas
fore_np = np.zeros_like(base_np)
h_warp, w_warp = warped_mask_roi.shape
y2c = y1 + h_warp
x2c = x1 + w_warp
fore_np[y1:y2c, x1:x2c][warped_mask_roi] = warped_roi[warped_mask_roi]
paste_mask_bool = np.zeros_like(mask_bin, dtype=bool)
paste_mask_bool[y1:y2c, x1:x2c] = warped_mask_roi
roi_update = (x1, y1, h_warp, w_warp, warped_mask_roi)
perspective_applied = True
base_np = fore_np
except Exception:
perspective_applied = False
paste_mask_bool = mask_bin.astype(bool)
# Optional: simulate cut-out foregrounds coming from different resolutions by
# downscaling the masked foreground region and upscaling back to original size.
# This introduces realistic blur/aliasing seen in real inpaint workflows.
if random.random() < 0.7:
ys, xs = np.where(mask_bin > 0)
if len(xs) > 0 and len(ys) > 0:
x1, x2 = int(xs.min()), int(xs.max())
y1, y2 = int(ys.min()), int(ys.max())
# Ensure valid box
if x2 > x1 and y2 > y1:
crop = base_np[y1:y2 + 1, x1:x2 + 1]
ch, cw = crop.shape[:2]
scale = random.uniform(0.2, 0.9)
dw = max(1, int(cw * scale))
dh = max(1, int(ch * scale))
try:
small = Image.fromarray(crop.astype(np.uint8)).resize((dw, dh), Image.BICUBIC)
back = small.resize((cw, ch), Image.BICUBIC)
crop_blurred = np.array(back).astype(np.uint8)
base_np[y1:y2 + 1, x1:x2 + 1] = crop_blurred
except Exception:
# Fallback: skip if resize fails
pass
# 6) Build masked target using (possibly) updated union mask; then paste
union_mask_for_target = union_mask.copy()
if roi_update is not None:
rx, ry, rh, rw, warped_mask_roi = roi_update
# Ensure union covers the warped foreground area inside ROI using warped shape
um_roi = union_mask_for_target[ry:ry + rh, rx:rx + rw]
union_mask_for_target[ry:ry + rh, rx:rx + rw] = np.clip(um_roi | warped_mask_roi.astype(np.uint8), 0, 1)
masked_t_np = tgt_np.copy()
masked_t_np[union_mask_for_target.astype(bool)] = 255
composed_np = masked_t_np.copy()
m_fore = paste_mask_bool
composed_np[m_fore] = base_np[m_fore]
# 7) Build tensors
source_tensor = to_tensor_and_norm(Image.fromarray(composed_np.astype(np.uint8)))
mask_tensor = torch.from_numpy(union_mask.astype(np.float32)).unsqueeze(0)
# 8) Caption: prepend instruction, 20% keep only instruction
cap_orig = rec.get("prompt", "") or ""
cap = _prepend_caption(cap_orig)
if perspective_applied:
cap = f"{cap} Fix the perspective if necessary."
ids1, ids2 = _tokenize(tokenizers, cap)
return {
"source_pixel_values": source_tensor,
"pixel_values": target_tensor,
"token_ids_clip": ids1,
"token_ids_t5": ids2,
"mask_values": mask_tensor,
}
return SubjectsDataset(records, base_dir)
def make_pexels_dataset_subjects(args, tokenizers, accelerator=None, base_dir=None):
"""
Dataset for JSONL with fields:
- input_path: relative to base_dir (target image)
- output_path: relative to relight_base_dir (relighted image)
- final_size: {width, height} resize applied
- caption: text caption
Modified to use segmentation maps instead of raw_mask_path.
Randomly selects 2-5 segments from segmentation map, applies augmentation to each, and takes union.
This simulates multiple foreground objects being placed like a puzzle.
Each segment independently uses: 20% original, 20% color_augment, 60% relighted image.
Args:
base_dir: Base directory for resolving relative paths. If None, uses args.pexels_base_dir.
"""
if base_dir is None:
base_dir = getattr(args, "pexels_base_dir", "/mnt/robby-b1/common/datasets")
relight_base_dir = getattr(args, "pexels_relight_base_dir", "/robby/share/Editing/lzc/data/relight_outputs")
seg_base_dir = getattr(args, "seg_base_dir", "/mnt/robby-b1/common/datasets/pexels-mask/20190515093182")
data_files = _resolve_jsonl(getattr(args, "pexels_data_jsonl", None))
file_paths = data_files.get("train", [])
records = []
for p in file_paths:
with open(p, "r", encoding="utf-8") as f:
for line in f:
line = line.strip()
if not line:
continue
try:
obj = json.loads(line)
except Exception:
try:
obj = json.loads(line.rstrip(","))
except Exception:
continue
pruned = {
"input_path": obj.get("input_path"),
"output_path": obj.get("output_path"),
"final_size": obj.get("final_size"),
"caption": obj.get("caption"),
}
records.append(pruned)
to_tensor_and_norm = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
])
class PexelsDataset(torch.utils.data.Dataset):
def __init__(self, hf_ds, base_dir, relight_base_dir, seg_base_dir):
self.ds = hf_ds
self.base_dir = base_dir
self.relight_base_dir = relight_base_dir
self.seg_base_dir = seg_base_dir
def __len__(self):
return len(self.ds)
def _extract_hash_from_filename(self, filename: str) -> str:
"""Extract hash from input filename for segmentation map lookup."""
stem = os.path.splitext(os.path.basename(filename))[0]
if '_' in stem:
parts = stem.split('_')
return parts[-1]
return stem
def _build_segmap_path(self, input_filename: str) -> str:
"""Build path to segmentation map from input filename."""
hash_id = self._extract_hash_from_filename(input_filename)
return os.path.join(self.seg_base_dir, f"{hash_id}_map.png")
def _load_segmap_uint32(self, seg_path: str):
"""Load segmentation map as uint32 array."""
import cv2
try:
with Image.open(seg_path) as im:
if im.mode == 'P':
seg = np.array(im)
elif im.mode in ('I;16', 'I', 'L'):
seg = np.array(im)
else:
seg = np.array(im.convert('L'))
except Exception:
return None
if seg.ndim == 3:
seg = cv2.cvtColor(seg, cv2.COLOR_BGR2GRAY)
return seg.astype(np.uint32)
def _extract_multiple_segments(
self,
image_h: int,
image_w: int,
seg_path: str,
min_area_ratio: float = 0.02,
max_area_ratio: float = 0.4,
):
"""Extract 2-5 individual segment masks from segmentation map."""
import cv2
seg = self._load_segmap_uint32(seg_path)
if seg is None:
return []
if seg.shape != (image_h, image_w):
seg = cv2.resize(seg.astype(np.uint16), (image_w, image_h), interpolation=cv2.INTER_NEAREST).astype(np.uint32)
labels, counts = np.unique(seg, return_counts=True)
if labels.size == 0:
return []
# Exclude background label 0
bg_mask = labels == 0
labels = labels[~bg_mask]
counts = counts[~bg_mask]
if labels.size == 0:
return []
area = image_h * image_w
min_px = int(round(min_area_ratio * area))
max_px = int(round(max_area_ratio * area))
keep = (counts >= min_px) & (counts <= max_px)
cand_labels = labels[keep]
if cand_labels.size == 0:
return []
# Select 2-5 labels randomly
max_sel = min(5, cand_labels.size)
min_sel = min(2, cand_labels.size)
num_to_select = random.randint(min_sel, max_sel)
chosen = np.random.choice(cand_labels, size=num_to_select, replace=False)
# Create individual masks for each chosen label
individual_masks = []
for lab in chosen:
binm = (seg == int(lab)).astype(np.uint8)
# Apply opening operation to clean up mask
k = max(3, int(round(max(image_h, image_w) * 0.01)))
if k % 2 == 0:
k += 1
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (k, k))
eroded = cv2.erode(binm, kernel, iterations=1)
opened = cv2.dilate(eroded, kernel, iterations=1)
individual_masks.append(opened)
return individual_masks
def __getitem__(self, idx):
rec = self.ds[idx % len(self.ds)]
t_rel = rec.get("input_path", "")
r_rel = rec.get("output_path", "")
t_p = os.path.join(self.base_dir, t_rel)
relight_p = os.path.join(self.relight_base_dir, r_rel)
import cv2
tgt_img = Image.open(t_p).convert("RGB")
# Load relighted image, fallback to target if not available
try:
relighted_img = Image.open(relight_p).convert("RGB")
except Exception:
relighted_img = tgt_img.copy()
final_size = rec.get("final_size", {}) or {}
fw = int(final_size.get("width", tgt_img.width))
fh = int(final_size.get("height", tgt_img.height))
tgt_img = tgt_img.resize((fw, fh), resample=Image.BILINEAR)
relighted_img = relighted_img.resize((fw, fh), resample=Image.BILINEAR)
target_tensor = to_tensor_and_norm(tgt_img)
# Build segmentation map path and extract multiple segments
input_filename = os.path.basename(t_rel)
seg_path = self._build_segmap_path(input_filename)
individual_masks = self._extract_multiple_segments(fh, fw, seg_path)
if not individual_masks:
# Fallback: create empty mask (will be handled gracefully)
union_mask = np.zeros((fh, fw), dtype=np.uint8)
individual_masks = []
else:
# Apply augmentation to each segment mask and take union
augmented_masks = []
for seg_mask in individual_masks:
# 1) Grow mask by random 50-200 pixels
grown = _dilate_mask(seg_mask, 50, 200)
# 2) Optional random augmentation mask constrained by this segment
rand_mask = _constrained_random_mask(seg_mask, fh, fw, aug_prob=0.7)
# 3) Union for this segment
seg_union = np.clip(grown | rand_mask, 0, 1).astype(np.uint8)
augmented_masks.append(seg_union)
# Take union of all augmented masks
union_mask = np.zeros((fh, fw), dtype=np.uint8)
for m in augmented_masks:
union_mask = np.clip(union_mask | m, 0, 1).astype(np.uint8)
tgt_np = np.array(tgt_img)
# Build masked target first
masked_t_np = tgt_np.copy()
masked_t_np[union_mask.astype(bool)] = 255
composed_np = masked_t_np.copy()
# Process each segment independently with different augmentations
# This simulates multiple foreground objects from different sources
for seg_mask in individual_masks:
# 1) Choose source for this segment: 20% original, 20% color_augment, 60% relighted
r = random.random()
if r < 0.2:
# Original image
seg_source_img = tgt_img
else:
seg_source_img = _color_augment(tgt_img)
# elif r < 0.4:
# # Color augmentation
# seg_source_img = _color_augment(tgt_img)
# else:
# # Relighted image
# seg_source_img = relighted_img
seg_source_np = np.array(seg_source_img)
# 2) Apply resolution augmentation to this segment's region
if random.random() < 0.7:
ys, xs = np.where(seg_mask > 0)
if len(xs) > 0 and len(ys) > 0:
x1, x2 = int(xs.min()), int(xs.max())
y1, y2 = int(ys.min()), int(ys.max())
if x2 > x1 and y2 > y1:
crop = seg_source_np[y1:y2 + 1, x1:x2 + 1]
ch, cw = crop.shape[:2]
scale = random.uniform(0.2, 0.9)
dw = max(1, int(cw * scale))
dh = max(1, int(ch * scale))
try:
small = Image.fromarray(crop.astype(np.uint8)).resize((dw, dh), Image.BICUBIC)
back = small.resize((cw, ch), Image.BICUBIC)
crop_blurred = np.array(back).astype(np.uint8)
seg_source_np[y1:y2 + 1, x1:x2 + 1] = crop_blurred
except Exception:
pass
# 3) Paste this segment onto composed image
m_fore = seg_mask.astype(bool)
composed_np[m_fore] = seg_source_np[m_fore]
# Build tensors
source_tensor = to_tensor_and_norm(Image.fromarray(composed_np.astype(np.uint8)))
mask_tensor = torch.from_numpy(union_mask.astype(np.float32)).unsqueeze(0)
# Caption: prepend instruction
cap_orig = rec.get("caption", "") or ""
cap = _prepend_caption(cap_orig)
ids1, ids2 = _tokenize(tokenizers, cap)
return {
"source_pixel_values": source_tensor,
"pixel_values": target_tensor,
"token_ids_clip": ids1,
"token_ids_t5": ids2,
"mask_values": mask_tensor,
}
return PexelsDataset(records, base_dir, relight_base_dir, seg_base_dir)
def make_mixed_dataset(args, tokenizers, interactive_jsonl_path=None, placement_jsonl_path=None,
pexels_jsonl_path=None, interactive_base_dir=None, placement_base_dir=None,
pexels_base_dir=None, interactive_weight=1.0, placement_weight=1.0,
pexels_weight=1.0, accelerator=None):
"""
Create a mixed dataset combining interactive, placement, and pexels datasets.
Args:
args: Arguments object with dataset configuration
tokenizers: Tuple of tokenizers for text encoding
interactive_jsonl_path: Path to interactive dataset JSONL (optional)
placement_jsonl_path: Path to placement dataset JSONL (optional)
pexels_jsonl_path: Path to pexels dataset JSONL (optional)
interactive_base_dir: Base directory for interactive dataset paths (optional)
placement_base_dir: Base directory for placement dataset paths (optional)
pexels_base_dir: Base directory for pexels dataset paths (optional)
interactive_weight: Sampling weight for interactive dataset (default: 1.0)
placement_weight: Sampling weight for placement dataset (default: 1.0)
pexels_weight: Sampling weight for pexels dataset (default: 1.0)
accelerator: Optional accelerator object
Returns:
Mixed dataset that samples from all provided datasets with specified weights
"""
datasets = []
dataset_names = []
dataset_weights = []
# Create interactive dataset if path provided
if interactive_jsonl_path:
interactive_args = type('Args', (), {})()
for k, v in vars(args).items():
setattr(interactive_args, k, v)
interactive_args.train_data_jsonl = interactive_jsonl_path
if interactive_base_dir:
interactive_args.interactive_base_dir = interactive_base_dir
interactive_ds = make_interactive_dataset_subjects(interactive_args, tokenizers, accelerator)
datasets.append(interactive_ds)
dataset_names.append("interactive")
dataset_weights.append(interactive_weight)
# Create placement dataset if path provided
if placement_jsonl_path:
placement_args = type('Args', (), {})()
for k, v in vars(args).items():
setattr(placement_args, k, v)
placement_args.placement_data_jsonl = placement_jsonl_path
if placement_base_dir:
placement_args.placement_base_dir = placement_base_dir
placement_ds = make_placement_dataset_subjects(placement_args, tokenizers, accelerator)
datasets.append(placement_ds)
dataset_names.append("placement")
dataset_weights.append(placement_weight)
# Create pexels dataset if path provided
if pexels_jsonl_path:
pexels_args = type('Args', (), {})()
for k, v in vars(args).items():
setattr(pexels_args, k, v)
pexels_args.pexels_data_jsonl = pexels_jsonl_path
if pexels_base_dir:
pexels_args.pexels_base_dir = pexels_base_dir
pexels_ds = make_pexels_dataset_subjects(pexels_args, tokenizers, accelerator)
datasets.append(pexels_ds)
dataset_names.append("pexels")
dataset_weights.append(pexels_weight)
if not datasets:
raise ValueError("At least one dataset path must be provided")
if len(datasets) == 1:
return datasets[0]
# Mixed dataset class with balanced sampling (based on smallest dataset)
class MixedDataset(torch.utils.data.Dataset):
def __init__(self, datasets, dataset_names, dataset_weights):
self.datasets = datasets
self.dataset_names = dataset_names
self.lengths = [len(ds) for ds in datasets]
# Normalize weights
total_weight = sum(dataset_weights)
self.weights = [w / total_weight for w in dataset_weights]
# Calculate samples per dataset based on smallest dataset and weights
# Find the minimum weighted size
min_weighted_size = min(length / weight for length, weight in zip(self.lengths, dataset_weights))
# Each dataset contributes samples proportional to its weight, scaled by min_weighted_size
self.samples_per_dataset = [int(min_weighted_size * w) for w in dataset_weights]
self.total_length = sum(self.samples_per_dataset)
# Build cumulative sample counts for indexing
self.cumsum_samples = [0]
for count in self.samples_per_dataset:
self.cumsum_samples.append(self.cumsum_samples[-1] + count)
print(f"Balanced mixed dataset created:")
for i, name in enumerate(dataset_names):
print(f" {name}: {self.lengths[i]} total, {self.samples_per_dataset[i]} per epoch")
print(f" Total samples per epoch: {self.total_length}")
def __len__(self):
return self.total_length
def __getitem__(self, idx):
# Determine which dataset this idx belongs to
dataset_idx = 0
for i in range(len(self.cumsum_samples) - 1):
if self.cumsum_samples[i] <= idx < self.cumsum_samples[i + 1]:
dataset_idx = i
break
# Randomly sample from the selected dataset (enables different samples each epoch)
local_idx = random.randint(0, self.lengths[dataset_idx] - 1)
sample = self.datasets[dataset_idx][local_idx]
# Add dataset source information
sample["dataset_source"] = self.dataset_names[dataset_idx]
return sample
return MixedDataset(datasets, dataset_names, dataset_weights)
def _run_test_mode(
interactive_jsonl: str = None,
placement_jsonl: str = None,
pexels_jsonl: str = None,
interactive_base_dir: str = None,
placement_base_dir: str = None,
pexels_base_dir: str = None,
pexels_relight_base_dir: str = None,
seg_base_dir: str = None,
interactive_weight: float = 1.0,
placement_weight: float = 1.0,
pexels_weight: float = 1.0,
output_dir: str = "test_output",
num_samples: int = 100
):
"""Test dataset by saving samples with source labels.
Args:
interactive_jsonl: Path to interactive dataset JSONL (optional)
placement_jsonl: Path to placement dataset JSONL (optional)
pexels_jsonl: Path to pexels dataset JSONL (optional)
interactive_base_dir: Base directory for interactive dataset
placement_base_dir: Base directory for placement dataset
pexels_base_dir: Base directory for pexels dataset
pexels_relight_base_dir: Base directory for pexels relighted images
seg_base_dir: Directory containing segmentation maps for pexels dataset
interactive_weight: Sampling weight for interactive dataset (default: 1.0)
placement_weight: Sampling weight for placement dataset (default: 1.0)
pexels_weight: Sampling weight for pexels dataset (default: 1.0)
output_dir: Output directory for test images
num_samples: Number of samples to save
"""
if not interactive_jsonl and not placement_jsonl and not pexels_jsonl:
raise ValueError("At least one dataset path must be provided")
os.makedirs(output_dir, exist_ok=True)
# Create dummy tokenizers for testing
class DummyTokenizer:
def __call__(self, text, **kwargs):
class Result:
input_ids = torch.zeros(1, 77, dtype=torch.long)
return Result()
tokenizers = (DummyTokenizer(), DummyTokenizer())
# Create args object
class Args:
cond_size = 512
args = Args()
args.train_data_jsonl = interactive_jsonl
args.placement_data_jsonl = placement_jsonl
args.pexels_data_jsonl = pexels_jsonl
args.interactive_base_dir = interactive_base_dir
args.placement_base_dir = placement_base_dir
args.pexels_base_dir = pexels_base_dir
args.pexels_relight_base_dir = pexels_relight_base_dir if pexels_relight_base_dir else "/robby/share/Editing/lzc/data/relight_outputs"
args.seg_base_dir = seg_base_dir if seg_base_dir else "/mnt/robby-b1/common/datasets/pexels-mask/20190515093182"
# Create dataset (single or mixed)
try:
# Count how many datasets are provided
num_datasets = sum([bool(interactive_jsonl), bool(placement_jsonl), bool(pexels_jsonl)])
if num_datasets > 1:
dataset = make_mixed_dataset(
args, tokenizers,
interactive_jsonl_path=interactive_jsonl,
placement_jsonl_path=placement_jsonl,
pexels_jsonl_path=pexels_jsonl,
interactive_base_dir=args.interactive_base_dir,
placement_base_dir=args.placement_base_dir,
pexels_base_dir=args.pexels_base_dir,
interactive_weight=interactive_weight,
placement_weight=placement_weight,
pexels_weight=pexels_weight
)
print(f"Created mixed dataset with {len(dataset)} samples")
weights_str = []
if interactive_jsonl:
weights_str.append(f"Interactive: {interactive_weight:.2f}")
if placement_jsonl:
weights_str.append(f"Placement: {placement_weight:.2f}")
if pexels_jsonl:
weights_str.append(f"Pexels: {pexels_weight:.2f}")
print(f"Sampling weights - {', '.join(weights_str)}")
elif pexels_jsonl:
dataset = make_pexels_dataset_subjects(args, tokenizers, base_dir=pexels_base_dir)
print(f"Created pexels dataset with {len(dataset)} samples")
elif placement_jsonl:
dataset = make_placement_dataset_subjects(args, tokenizers, base_dir=args.placement_base_dir)
print(f"Created placement dataset with {len(dataset)} samples")
else:
dataset = make_interactive_dataset_subjects(args, tokenizers, base_dir=args.interactive_base_dir)
print(f"Created interactive dataset with {len(dataset)} samples")
except Exception as e:
print(f"Failed to create dataset: {e}")
import traceback
traceback.print_exc()
return
# Sample and save
saved = 0
counts = {}
for attempt in range(min(num_samples * 3, len(dataset))):
try:
idx = random.randint(0, len(dataset) - 1)
sample = dataset[idx]
source_name = sample.get("dataset_source", "single")
counts[source_name] = counts.get(source_name, 0) + 1
# Denormalize tensors from [-1, 1] to [0, 255]
source_np = ((sample["source_pixel_values"].permute(1, 2, 0).numpy() + 1.0) * 127.5).clip(0, 255).astype(np.uint8)
target_np = ((sample["pixel_values"].permute(1, 2, 0).numpy() + 1.0) * 127.5).clip(0, 255).astype(np.uint8)
# Save images
idx_str = f"{saved:05d}"
Image.fromarray(source_np).save(os.path.join(output_dir, f"{idx_str}_{source_name}_source.jpg"))
Image.fromarray(target_np).save(os.path.join(output_dir, f"{idx_str}_{source_name}_target.jpg"))
saved += 1
if saved % 10 == 0:
print(f"Saved {saved}/{num_samples} samples - {counts}")
if saved >= num_samples:
break
except Exception as e:
print(f"Failed to process sample: {e}")
continue
print(f"\nTest complete. Saved {saved} samples to {output_dir}")
print(f"Distribution: {counts}")
def _parse_test_args():
import argparse
parser = argparse.ArgumentParser(description="Test visualization for Kontext datasets")
parser.add_argument("--interactive_jsonl", type=str, default="/robby/share/Editing/lzc/HOI_v1/final_metadata.jsonl",
help="Path to interactive dataset JSONL")
parser.add_argument("--placement_jsonl", type=str, default="/robby/share/Editing/lzc/subject_placement/metadata_relight.jsonl",
help="Path to placement dataset JSONL")
parser.add_argument("--pexels_jsonl", type=str, default=None,
help="Path to pexels dataset JSONL")
parser.add_argument("--interactive_base_dir", type=str, default="/robby/share/Editing/lzc/HOI_v1",
help="Base directory for interactive dataset")
parser.add_argument("--placement_base_dir", type=str, default=None,
help="Base directory for placement dataset")
parser.add_argument("--pexels_base_dir", type=str, default=None,
help="Base directory for pexels dataset")
parser.add_argument("--pexels_relight_base_dir", type=str, default="/robby/share/Editing/lzc/data/relight_outputs",
help="Base directory for pexels relighted images")
parser.add_argument("--seg_base_dir", type=str, default=None,
help="Directory containing segmentation maps for pexels dataset")
parser.add_argument("--interactive_weight", type=float, default=1.0,
help="Sampling weight for interactive dataset (default: 1.0)")
parser.add_argument("--placement_weight", type=float, default=1.0,
help="Sampling weight for placement dataset (default: 1.0)")
parser.add_argument("--pexels_weight", type=float, default=0,
help="Sampling weight for pexels dataset (default: 1.0)")
parser.add_argument("--output_dir", type=str, default="visualize_output",
help="Output directory to save pairs")
parser.add_argument("--num_samples", type=int, default=100,
help="Number of pairs to save")
# Legacy arguments
parser.add_argument("--test_jsonl", type=str, default=None,
help="Legacy: Path to JSONL (uses as interactive_jsonl)")
parser.add_argument("--base_dir", type=str, default=None,
help="Legacy: Base directory (uses as interactive_base_dir)")
return parser.parse_args()
if __name__ == "__main__":
try:
args = _parse_test_args()
# Handle legacy args
interactive_jsonl = args.interactive_jsonl or args.test_jsonl
interactive_base_dir = args.interactive_base_dir or args.base_dir
_run_test_mode(
interactive_jsonl=interactive_jsonl,
placement_jsonl=args.placement_jsonl,
pexels_jsonl=args.pexels_jsonl,
interactive_base_dir=interactive_base_dir,
placement_base_dir=args.placement_base_dir,
pexels_base_dir=args.pexels_base_dir,
pexels_relight_base_dir=args.pexels_relight_base_dir,
seg_base_dir=args.seg_base_dir,
interactive_weight=args.interactive_weight,
placement_weight=args.placement_weight,
pexels_weight=args.pexels_weight,
output_dir=args.output_dir,
num_samples=args.num_samples
)
except SystemExit:
# Allow import usage without triggering test mode
pass
|