Spaces:
Running
on
Zero
Running
on
Zero
File size: 42,090 Bytes
f460ce6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 |
import argparse
import copy
import logging
import math
import os
import shutil
from contextlib import nullcontext
from pathlib import Path
import re
from safetensors.torch import save_file
from PIL import Image
import numpy as np
import torch
import torch.utils.checkpoint
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed
import diffusers
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler
from diffusers.optimization import get_scheduler
from diffusers.training_utils import (
cast_training_params,
compute_density_for_timestep_sampling,
compute_loss_weighting_for_sd3,
)
from diffusers.utils.torch_utils import is_compiled_module
from diffusers.utils import (
check_min_version,
is_wandb_available,
)
from src.prompt_helper import *
from src.lora_helper import *
from src.jsonl_datasets_kontext_edge import make_train_dataset_inpaint_mask, collate_fn
from src.pipeline_flux_kontext_control import (
FluxKontextControlPipeline,
resize_position_encoding,
prepare_latent_subject_ids,
PREFERRED_KONTEXT_RESOLUTIONS
)
from src.transformer_flux import FluxTransformer2DModel
from diffusers.models.attention_processor import FluxAttnProcessor2_0
from src.layers import MultiDoubleStreamBlockLoraProcessor, MultiSingleStreamBlockLoraProcessor
from tqdm.auto import tqdm
if is_wandb_available():
import wandb
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.31.0.dev0")
logger = get_logger(__name__)
def log_validation(
pipeline,
args,
accelerator,
pipeline_args,
step,
torch_dtype,
is_final_validation=False,
):
logger.info(
f"Running validation... Strict per-case evaluation for image, spatial image, and prompt."
)
pipeline = pipeline.to(accelerator.device)
pipeline.set_progress_bar_config(disable=True)
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None
autocast_ctx = nullcontext()
# Build per-case evaluation: require equal lengths for image, spatial image, and prompt
if args.validation_images is None or args.validation_images == ['None']:
raise ValueError("validation_images must be provided and non-empty")
if args.validation_prompt is None:
raise ValueError("validation_prompt must be provided and non-empty")
control_dict_root = dict(pipeline_args.get("control_dict", {})) if pipeline_args is not None else {}
spatial_ls = control_dict_root.get("spatial_images", []) or []
val_imgs = args.validation_images
prompts = args.validation_prompt
if not (len(val_imgs) == len(prompts) == len(spatial_ls)):
raise ValueError(
f"Length mismatch: validation_images={len(val_imgs)}, validation_prompt={len(prompts)}, spatial_images={len(spatial_ls)}"
)
results = []
def _resize_to_preferred(img: Image.Image) -> Image.Image:
w, h = img.size
aspect_ratio = w / h if h != 0 else 1.0
_, target_w, target_h = min(
(abs(aspect_ratio - (pref_w / pref_h)), pref_w, pref_h)
for (pref_h, pref_w) in PREFERRED_KONTEXT_RESOLUTIONS
)
return img.resize((target_w, target_h), Image.BICUBIC)
# Strict per-case loop
num_cases = len(prompts)
logger.info(f"Paired validation: {num_cases} (image, spatial, prompt) cases")
with autocast_ctx:
for idx in range(num_cases):
resized_img = None
# If validation image path is a non-empty string, load and resize; otherwise, skip passing image
if isinstance(val_imgs[idx], str) and val_imgs[idx] != "":
try:
base_img = Image.open(val_imgs[idx]).convert("RGB")
resized_img = _resize_to_preferred(base_img)
except Exception as e:
raise ValueError(f"Failed to load/resize validation image idx={idx}: {e}")
case_args = dict(pipeline_args) if pipeline_args is not None else {}
case_args.pop("height", None)
case_args.pop("width", None)
if resized_img is not None:
tw, th = resized_img.size
case_args["height"] = th
case_args["width"] = tw
else:
# When no image is provided, default to 1024x1024
case_args["height"] = 1024
case_args["width"] = 1024
# Bind single spatial control image per case; pass it directly (no masking)
case_control = dict(case_args.get("control_dict", {}))
spatial_case = spatial_ls[idx]
# Load spatial image if it's a path; else assume it's already an image
try:
spatial_img = Image.open(spatial_case).convert("RGB") if isinstance(spatial_case, str) else spatial_case
except Exception:
spatial_img = spatial_case
case_control["spatial_images"] = [spatial_img]
case_control["subject_images"] = []
case_args["control_dict"] = case_control
# Override prompt per case
case_args["prompt"] = prompts[idx]
if resized_img is not None:
img = pipeline(image=resized_img, **case_args, generator=generator).images[0]
else:
img = pipeline(**case_args, generator=generator).images[0]
results.append(img)
# Log results (resize to 1024x1024 for logging only)
resized_for_log = [img.resize((1024, 1024), Image.BICUBIC) for img in results]
for tracker in accelerator.trackers:
phase_name = "test" if is_final_validation else "validation"
if tracker.name == "tensorboard":
np_images = np.stack([np.asarray(img) for img in resized_for_log])
tracker.writer.add_images(phase_name, np_images, step, dataformats="NHWC")
if tracker.name == "wandb":
tracker.log({
phase_name: [wandb.Image(image, caption=f"{i}: {prompts[i] if i < len(prompts) else ''}") for i, image in enumerate(resized_for_log)]
})
del pipeline
if torch.cuda.is_available():
torch.cuda.empty_cache()
return results
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder"):
text_encoder_config = transformers.PretrainedConfig.from_pretrained(
pretrained_model_name_or_path, subfolder=subfolder, revision=revision
)
model_class = text_encoder_config.architectures[0]
if model_class == "CLIPTextModel":
from transformers import CLIPTextModel
return CLIPTextModel
elif model_class == "T5EncoderModel":
from transformers import T5EncoderModel
return T5EncoderModel
else:
raise ValueError(f"{model_class} is not supported.")
def parse_args(input_args=None):
parser = argparse.ArgumentParser(description="Training script for Flux Kontext with EasyControl.")
parser.add_argument("--lora_num", type=int, default=1, help="number of the lora.")
parser.add_argument("--cond_size", type=int, default=512, help="size of the condition data.")
parser.add_argument("--mode", type=str, default=None, help="Controller mode; kept for compatibility.")
parser.add_argument("--train_data_dir", type=str, default="", help="Path to JSONL dataset.")
parser.add_argument("--pretrained_model_name_or_path", type=str, default="", required=False, help="Base model path")
parser.add_argument("--pretrained_lora_path", type=str, default=None, required=False, help="LoRA checkpoint to initialize from")
parser.add_argument("--revision", type=str, default=None, required=False, help="Revision of pretrained model")
parser.add_argument("--variant", type=str, default=None, help="Variant of the model files")
parser.add_argument("--repeats", type=int, default=1, help="How many times to repeat the training data.")
parser.add_argument("--max_sequence_length", type=int, default=128, help="Max sequence length for T5")
parser.add_argument("--kontext", type=str, default="disable")
parser.add_argument("--validation_prompt", type=str, nargs="+", default=None)
parser.add_argument("--validation_images", type=str, nargs="+", default=None, help="List of valiadation images")
parser.add_argument("--subject_test_images", type=str, nargs="+", default=None, help="List of subject test images")
parser.add_argument("--spatial_test_images", type=str, nargs="+", default=None, help="List of spatial test images")
parser.add_argument("--num_validation_images", type=int, default=4)
parser.add_argument("--validation_steps", type=int, default=20)
parser.add_argument("--ranks", type=int, nargs="+", default=[128], help="LoRA ranks")
parser.add_argument("--network_alphas", type=int, nargs="+", default=[128], help="LoRA network alphas")
parser.add_argument("--output_dir", type=str, default="/tiamat-NAS/zhangyuxuan/projects2/Easy_Control_0120/single_models/subject_model", help="Output directory")
parser.add_argument("--seed", type=int, default=None)
parser.add_argument("--train_batch_size", type=int, default=1)
parser.add_argument("--num_train_epochs", type=int, default=50)
parser.add_argument("--max_train_steps", type=int, default=None)
parser.add_argument("--checkpointing_steps", type=int, default=1000)
parser.add_argument("--checkpoints_total_limit", type=int, default=None)
parser.add_argument("--resume_from_checkpoint", type=str, default=None)
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
parser.add_argument("--gradient_checkpointing", action="store_true")
parser.add_argument("--learning_rate", type=float, default=1e-4)
parser.add_argument("--guidance_scale", type=float, default=1.0, help="Flux Kontext is guidance distilled")
parser.add_argument("--scale_lr", action="store_true", default=False)
parser.add_argument("--lr_scheduler", type=str, default="constant")
parser.add_argument("--lr_warmup_steps", type=int, default=500)
parser.add_argument("--lr_num_cycles", type=int, default=1)
parser.add_argument("--lr_power", type=float, default=1.0)
parser.add_argument("--dataloader_num_workers", type=int, default=1)
parser.add_argument("--weighting_scheme", type=str, default="none", choices=["sigma_sqrt", "logit_normal", "mode", "cosmap", "none"])
parser.add_argument("--logit_mean", type=float, default=0.0)
parser.add_argument("--logit_std", type=float, default=1.0)
parser.add_argument("--mode_scale", type=float, default=1.29)
parser.add_argument("--optimizer", type=str, default="AdamW")
parser.add_argument("--use_8bit_adam", action="store_true")
parser.add_argument("--adam_beta1", type=float, default=0.9)
parser.add_argument("--adam_beta2", type=float, default=0.999)
parser.add_argument("--prodigy_beta3", type=float, default=None)
parser.add_argument("--prodigy_decouple", type=bool, default=True)
parser.add_argument("--adam_weight_decay", type=float, default=1e-04)
parser.add_argument("--adam_weight_decay_text_encoder", type=float, default=1e-03)
parser.add_argument("--adam_epsilon", type=float, default=1e-08)
parser.add_argument("--prodigy_use_bias_correction", type=bool, default=True)
parser.add_argument("--prodigy_safeguard_warmup", type=bool, default=True)
parser.add_argument("--max_grad_norm", type=float, default=1.0)
parser.add_argument("--logging_dir", type=str, default="logs")
parser.add_argument("--cache_latents", action="store_true", default=False)
parser.add_argument("--report_to", type=str, default="tensorboard")
parser.add_argument("--mixed_precision", type=str, default="bf16", choices=["no", "fp16", "bf16"])
parser.add_argument("--upcast_before_saving", action="store_true", default=False)
if input_args is not None:
args = parser.parse_args(input_args)
else:
args = parser.parse_args()
return args
def main(args):
if torch.backends.mps.is_available() and args.mixed_precision == "bf16":
raise ValueError("Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 or fp32 instead.")
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
os.makedirs(args.logging_dir, exist_ok=True)
logging_dir = Path(args.output_dir, args.logging_dir)
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=args.report_to,
project_config=accelerator_project_config,
kwargs_handlers=[kwargs],
)
if torch.backends.mps.is_available():
accelerator.native_amp = False
if args.report_to == "wandb":
if not is_wandb_available():
raise ImportError("Install wandb for logging during training.")
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
if args.seed is not None:
set_seed(args.seed)
if accelerator.is_main_process and args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
# Tokenizers
tokenizer_one = transformers.CLIPTokenizer.from_pretrained(
args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision
)
tokenizer_two = transformers.T5TokenizerFast.from_pretrained(
args.pretrained_model_name_or_path, subfolder="tokenizer_2", revision=args.revision
)
# Text encoders
text_encoder_cls_one = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder")
text_encoder_cls_two = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_2")
# Scheduler and models
noise_scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
noise_scheduler_copy = copy.deepcopy(noise_scheduler)
text_encoder_one, text_encoder_two = load_text_encoders(args, text_encoder_cls_one, text_encoder_cls_two)
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, variant=args.variant)
transformer = FluxTransformer2DModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="transformer", revision=args.revision, variant=args.variant)
# Train only LoRA adapters
transformer.requires_grad_(True)
vae.requires_grad_(False)
text_encoder_one.requires_grad_(False)
text_encoder_two.requires_grad_(False)
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
if torch.backends.mps.is_available() and weight_dtype == torch.bfloat16:
raise ValueError("Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 or fp32 instead.")
vae.to(accelerator.device, dtype=weight_dtype)
transformer.to(accelerator.device, dtype=weight_dtype)
text_encoder_one.to(accelerator.device, dtype=weight_dtype)
text_encoder_two.to(accelerator.device, dtype=weight_dtype)
if args.gradient_checkpointing:
transformer.enable_gradient_checkpointing()
# Setup LoRA attention processors
if args.pretrained_lora_path is not None:
lora_path = args.pretrained_lora_path
checkpoint = load_checkpoint(lora_path)
lora_attn_procs = {}
double_blocks_idx = list(range(19))
single_blocks_idx = list(range(38))
number = 1
for name, attn_processor in transformer.attn_processors.items():
match = re.search(r'\.(\d+)\.', name)
if match:
layer_index = int(match.group(1))
if name.startswith("transformer_blocks") and layer_index in double_blocks_idx:
lora_state_dicts = {}
for key, value in checkpoint.items():
if re.search(r'\.(\d+)\.', key):
checkpoint_layer_index = int(re.search(r'\.(\d+)\.', key).group(1))
if checkpoint_layer_index == layer_index and key.startswith("transformer_blocks"):
lora_state_dicts[key] = value
lora_attn_procs[name] = MultiDoubleStreamBlockLoraProcessor(
dim=3072, ranks=args.ranks, network_alphas=args.network_alphas, lora_weights=[1 for _ in range(args.lora_num)], device=accelerator.device, dtype=weight_dtype, cond_width=args.cond_size, cond_height=args.cond_size, n_loras=args.lora_num
)
for n in range(number):
lora_attn_procs[name].q_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.q_loras.{n}.down.weight', None)
lora_attn_procs[name].q_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.q_loras.{n}.up.weight', None)
lora_attn_procs[name].k_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.k_loras.{n}.down.weight', None)
lora_attn_procs[name].k_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.k_loras.{n}.up.weight', None)
lora_attn_procs[name].v_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.v_loras.{n}.down.weight', None)
lora_attn_procs[name].v_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.v_loras.{n}.up.weight', None)
lora_attn_procs[name].proj_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.proj_loras.{n}.down.weight', None)
lora_attn_procs[name].proj_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.proj_loras.{n}.up.weight', None)
elif name.startswith("single_transformer_blocks") and layer_index in single_blocks_idx:
lora_state_dicts = {}
for key, value in checkpoint.items():
if re.search(r'\.(\d+)\.', key):
checkpoint_layer_index = int(re.search(r'\.(\d+)\.', key).group(1))
if checkpoint_layer_index == layer_index and key.startswith("single_transformer_blocks"):
lora_state_dicts[key] = value
lora_attn_procs[name] = MultiSingleStreamBlockLoraProcessor(
dim=3072, ranks=args.ranks, network_alphas=args.network_alphas, lora_weights=[1 for _ in range(args.lora_num)], device=accelerator.device, dtype=weight_dtype, cond_width=args.cond_size, cond_height=args.cond_size, n_loras=args.lora_num
)
for n in range(number):
lora_attn_procs[name].q_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.q_loras.{n}.down.weight', None)
lora_attn_procs[name].q_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.q_loras.{n}.up.weight', None)
lora_attn_procs[name].k_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.k_loras.{n}.down.weight', None)
lora_attn_procs[name].k_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.k_loras.{n}.up.weight', None)
lora_attn_procs[name].v_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.v_loras.{n}.down.weight', None)
lora_attn_procs[name].v_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.v_loras.{n}.up.weight', None)
else:
lora_attn_procs[name] = FluxAttnProcessor2_0()
else:
lora_attn_procs = {}
double_blocks_idx = list(range(19))
single_blocks_idx = list(range(38))
for name, attn_processor in transformer.attn_processors.items():
match = re.search(r'\.(\d+)\.', name)
if match:
layer_index = int(match.group(1))
if name.startswith("transformer_blocks") and layer_index in double_blocks_idx:
lora_attn_procs[name] = MultiDoubleStreamBlockLoraProcessor(
dim=3072, ranks=args.ranks, network_alphas=args.network_alphas, lora_weights=[1 for _ in range(args.lora_num)], device=accelerator.device, dtype=weight_dtype, cond_width=args.cond_size, cond_height=args.cond_size, n_loras=args.lora_num
)
elif name.startswith("single_transformer_blocks") and layer_index in single_blocks_idx:
lora_attn_procs[name] = MultiSingleStreamBlockLoraProcessor(
dim=3072, ranks=args.ranks, network_alphas=args.network_alphas, lora_weights=[1 for _ in range(args.lora_num)], device=accelerator.device, dtype=weight_dtype, cond_width=args.cond_size, cond_height=args.cond_size, n_loras=args.lora_num
)
else:
lora_attn_procs[name] = attn_processor
transformer.set_attn_processor(lora_attn_procs)
transformer.train()
for n, param in transformer.named_parameters():
if '_lora' not in n:
param.requires_grad = False
print(sum([p.numel() for p in transformer.parameters() if p.requires_grad]) / 1000000, 'M parameters')
def unwrap_model(model):
model = accelerator.unwrap_model(model)
model = model._orig_mod if is_compiled_module(model) else model
return model
if args.resume_from_checkpoint:
path = args.resume_from_checkpoint
global_step = int(path.split("-")[-1])
initial_global_step = global_step
else:
initial_global_step = 0
global_step = 0
first_epoch = 0
if args.scale_lr:
args.learning_rate = (
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
)
if args.mixed_precision == "fp16":
models = [transformer]
cast_training_params(models, dtype=torch.float32)
params_to_optimize = [p for p in transformer.parameters() if p.requires_grad]
transformer_parameters_with_lr = {"params": params_to_optimize, "lr": args.learning_rate}
print(sum([p.numel() for p in transformer.parameters() if p.requires_grad]) / 1000000, 'parameters')
optimizer_class = torch.optim.AdamW
optimizer = optimizer_class(
[transformer_parameters_with_lr],
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
tokenizers = [tokenizer_one, tokenizer_two]
text_encoders = [text_encoder_one, text_encoder_two]
train_dataset = make_train_dataset_inpaint_mask(args, tokenizers, accelerator)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.train_batch_size,
shuffle=True,
collate_fn=collate_fn,
num_workers=args.dataloader_num_workers,
)
vae_config_shift_factor = vae.config.shift_factor
vae_config_scaling_factor = vae.config.scaling_factor
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.resume_from_checkpoint:
first_epoch = global_step // num_update_steps_per_epoch
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
num_training_steps=args.max_train_steps * accelerator.num_processes,
num_cycles=args.lr_num_cycles,
power=args.lr_power,
)
transformer, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
transformer, optimizer, train_dataloader, lr_scheduler
)
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# Sanitize config for TensorBoard hparams (only allow int/float/bool/str/tensor). Others are stringified if possible; otherwise dropped
def _sanitize_hparams(config_dict):
sanitized = {}
for key, value in dict(config_dict).items():
try:
if value is None:
continue
# numpy scalar types
if isinstance(value, (np.integer,)):
sanitized[key] = int(value)
elif isinstance(value, (np.floating,)):
sanitized[key] = float(value)
elif isinstance(value, (int, float, bool, str)):
sanitized[key] = value
elif isinstance(value, Path):
sanitized[key] = str(value)
elif isinstance(value, (list, tuple)):
# stringify simple sequences; skip if fails
sanitized[key] = str(value)
else:
# best-effort stringify
sanitized[key] = str(value)
except Exception:
# skip unconvertible entries
continue
return sanitized
if accelerator.is_main_process:
tracker_name = "Easy_Control_Kontext"
accelerator.init_trackers(tracker_name, config=_sanitize_hparams(vars(args)))
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num batches each epoch = {len(train_dataloader)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
progress_bar = tqdm(
range(0, args.max_train_steps),
initial=initial_global_step,
desc="Steps",
disable=not accelerator.is_local_main_process,
)
def get_sigmas(timesteps, n_dim=4, dtype=torch.float32):
sigmas = noise_scheduler_copy.sigmas.to(device=accelerator.device, dtype=dtype)
schedule_timesteps = noise_scheduler_copy.timesteps.to(accelerator.device)
timesteps = timesteps.to(accelerator.device)
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
sigma = sigmas[step_indices].flatten()
while len(sigma.shape) < n_dim:
sigma = sigma.unsqueeze(-1)
return sigma
# Kontext specifics
vae_scale_factor = 8 # Kontext uses 8x VAE factor; pack/unpack uses additional 2x in methods
# Match pipeline's prepare_latents cond resolution: 2 * (cond_size // (vae_scale_factor * 2))
height_cond = 2 * (args.cond_size // (vae_scale_factor * 2))
width_cond = 2 * (args.cond_size // (vae_scale_factor * 2))
offset = 64
for epoch in range(first_epoch, args.num_train_epochs):
transformer.train()
for step, batch in enumerate(train_dataloader):
models_to_accumulate = [transformer]
with accelerator.accumulate(models_to_accumulate):
tokens = [batch["text_ids_1"], batch["text_ids_2"]]
prompt_embeds, pooled_prompt_embeds, text_ids = encode_token_ids(text_encoders, tokens, accelerator)
prompt_embeds = prompt_embeds.to(dtype=vae.dtype, device=accelerator.device)
pooled_prompt_embeds = pooled_prompt_embeds.to(dtype=vae.dtype, device=accelerator.device)
text_ids = text_ids.to(dtype=vae.dtype, device=accelerator.device)
pixel_values = batch["pixel_values"].to(dtype=vae.dtype)
height_ = 2 * (int(pixel_values.shape[-2]) // (vae_scale_factor * 2))
width_ = 2 * (int(pixel_values.shape[-1]) // (vae_scale_factor * 2))
model_input = vae.encode(pixel_values).latent_dist.sample()
model_input = (model_input - vae_config_shift_factor) * vae_config_scaling_factor
model_input = model_input.to(dtype=weight_dtype)
latent_image_ids, cond_latent_image_ids = resize_position_encoding(
model_input.shape[0], height_, width_, height_cond, width_cond, accelerator.device, weight_dtype
)
noise = torch.randn_like(model_input)
bsz = model_input.shape[0]
u = compute_density_for_timestep_sampling(
weighting_scheme=args.weighting_scheme,
batch_size=bsz,
logit_mean=args.logit_mean,
logit_std=args.logit_std,
mode_scale=args.mode_scale,
)
indices = (u * noise_scheduler_copy.config.num_train_timesteps).long()
timesteps = noise_scheduler_copy.timesteps[indices].to(device=model_input.device)
sigmas = get_sigmas(timesteps, n_dim=model_input.ndim, dtype=model_input.dtype)
noisy_model_input = (1.0 - sigmas) * model_input + sigmas * noise
packed_noisy_model_input = FluxKontextControlPipeline._pack_latents(
noisy_model_input,
batch_size=model_input.shape[0],
num_channels_latents=model_input.shape[1],
height=model_input.shape[2],
width=model_input.shape[3],
)
latent_image_ids_to_concat = [latent_image_ids]
packed_cond_model_input_to_concat = []
if args.kontext == "enable":
source_pixel_values = batch["source_pixel_values"].to(dtype=vae.dtype)
source_image_latents = vae.encode(source_pixel_values).latent_dist.sample()
source_image_latents = (source_image_latents - vae_config_shift_factor) * vae_config_scaling_factor
image_latent_h, image_latent_w = source_image_latents.shape[2:]
packed_image_latents = FluxKontextControlPipeline._pack_latents(
source_image_latents,
batch_size=source_image_latents.shape[0],
num_channels_latents=source_image_latents.shape[1],
height=image_latent_h,
width=image_latent_w,
)
source_image_ids = FluxKontextControlPipeline._prepare_latent_image_ids(
batch_size=source_image_latents.shape[0],
height=image_latent_h // 2,
width=image_latent_w // 2,
device=accelerator.device,
dtype=weight_dtype,
)
source_image_ids[..., 0] = 1 # Mark as condition
latent_image_ids_to_concat.append(source_image_ids)
subject_pixel_values = batch.get("subject_pixel_values")
if subject_pixel_values is not None:
subject_pixel_values = subject_pixel_values.to(dtype=vae.dtype)
subject_input = vae.encode(subject_pixel_values).latent_dist.sample()
subject_input = (subject_input - vae_config_shift_factor) * vae_config_scaling_factor
subject_input = subject_input.to(dtype=weight_dtype)
sub_number = subject_pixel_values.shape[-2] // args.cond_size
latent_subject_ids = prepare_latent_subject_ids(height_cond // 2, width_cond // 2, accelerator.device, weight_dtype)
latent_subject_ids[..., 0] = 2
latent_subject_ids[:, 1] += offset
sub_latent_image_ids = torch.cat([latent_subject_ids for _ in range(sub_number)], dim=0)
latent_image_ids_to_concat.append(sub_latent_image_ids)
packed_subject_model_input = FluxKontextControlPipeline._pack_latents(
subject_input,
batch_size=subject_input.shape[0],
num_channels_latents=subject_input.shape[1],
height=subject_input.shape[2],
width=subject_input.shape[3],
)
packed_cond_model_input_to_concat.append(packed_subject_model_input)
cond_pixel_values = batch.get("cond_pixel_values")
if cond_pixel_values is not None:
cond_pixel_values = cond_pixel_values.to(dtype=vae.dtype)
cond_input = vae.encode(cond_pixel_values).latent_dist.sample()
cond_input = (cond_input - vae_config_shift_factor) * vae_config_scaling_factor
cond_input = cond_input.to(dtype=weight_dtype)
cond_number = cond_pixel_values.shape[-2] // args.cond_size
cond_latent_image_ids[..., 0] = 2
cond_latent_image_ids_rep = torch.cat([cond_latent_image_ids for _ in range(cond_number)], dim=0)
latent_image_ids_to_concat.append(cond_latent_image_ids_rep)
packed_cond_model_input = FluxKontextControlPipeline._pack_latents(
cond_input,
batch_size=cond_input.shape[0],
num_channels_latents=cond_input.shape[1],
height=cond_input.shape[2],
width=cond_input.shape[3],
)
packed_cond_model_input_to_concat.append(packed_cond_model_input)
latent_image_ids = torch.cat(latent_image_ids_to_concat, dim=0)
cond_packed_noisy_model_input = torch.cat(packed_cond_model_input_to_concat, dim=1)
if accelerator.unwrap_model(transformer).config.guidance_embeds:
guidance = torch.tensor([args.guidance_scale], device=accelerator.device)
guidance = guidance.expand(model_input.shape[0])
else:
guidance = None
latent_model_input=packed_noisy_model_input
if args.kontext == "enable":
latent_model_input = torch.cat([latent_model_input, packed_image_latents], dim=1)
model_pred = transformer(
hidden_states=latent_model_input,
cond_hidden_states=cond_packed_noisy_model_input,
timestep=timesteps / 1000,
guidance=guidance,
pooled_projections=pooled_prompt_embeds,
encoder_hidden_states=prompt_embeds,
txt_ids=text_ids,
img_ids=latent_image_ids,
return_dict=False,
)[0]
model_pred = model_pred[:, : packed_noisy_model_input.size(1)]
model_pred = FluxKontextControlPipeline._unpack_latents(
model_pred,
height=int(pixel_values.shape[-2]),
width=int(pixel_values.shape[-1]),
vae_scale_factor=vae_scale_factor,
)
weighting = compute_loss_weighting_for_sd3(weighting_scheme=args.weighting_scheme, sigmas=sigmas)
target = noise - model_input
loss = torch.mean((weighting.float() * (model_pred.float() - target.float()) ** 2).reshape(target.shape[0], -1), 1)
loss = loss.mean()
accelerator.backward(loss)
if accelerator.sync_gradients:
params_to_clip = (transformer.parameters())
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
if accelerator.is_main_process:
if global_step % args.checkpointing_steps == 0:
if args.checkpoints_total_limit is not None:
checkpoints = os.listdir(args.output_dir)
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))
if len(checkpoints) >= args.checkpoints_total_limit:
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
removing_checkpoints = checkpoints[0:num_to_remove]
logger.info(f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints")
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")
for removing_checkpoint in removing_checkpoints:
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
shutil.rmtree(removing_checkpoint)
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
os.makedirs(save_path, exist_ok=True)
unwrapped_model_state = accelerator.unwrap_model(transformer).state_dict()
lora_state_dict = {k: unwrapped_model_state[k] for k in unwrapped_model_state.keys() if '_lora' in k}
save_file(lora_state_dict, os.path.join(save_path, "lora.safetensors"))
logger.info(f"Saved state to {save_path}")
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
if accelerator.is_main_process:
if args.validation_prompt is not None and global_step % args.validation_steps == 0:
pipeline = FluxKontextControlPipeline.from_pretrained(
args.pretrained_model_name_or_path,
vae=vae,
text_encoder=accelerator.unwrap_model(text_encoder_one),
text_encoder_2=accelerator.unwrap_model(text_encoder_two),
transformer=accelerator.unwrap_model(transformer),
revision=args.revision,
variant=args.variant,
torch_dtype=weight_dtype,
)
if args.subject_test_images is not None and len(args.subject_test_images) != 0 and args.subject_test_images != ['None']:
subject_paths = args.subject_test_images
subject_ls = [Image.open(image_path).convert("RGB") for image_path in subject_paths]
else:
subject_ls = []
if args.spatial_test_images is not None and len(args.spatial_test_images) != 0 and args.spatial_test_images != ['None']:
spatial_paths = args.spatial_test_images
spatial_ls = [Image.open(image_path).convert("RGB") for image_path in spatial_paths]
else:
spatial_ls = []
pipeline_args = {
"prompt": args.validation_prompt,
"cond_size": args.cond_size,
"guidance_scale": 3.5,
"num_inference_steps": 20,
"max_sequence_length": 128,
"control_dict": {"spatial_images": spatial_ls, "subject_images": subject_ls},
}
images = log_validation(
pipeline=pipeline,
args=args,
accelerator=accelerator,
pipeline_args=pipeline_args,
step=global_step,
torch_dtype=weight_dtype,
)
save_path = os.path.join(args.output_dir, "validation")
os.makedirs(save_path, exist_ok=True)
save_folder = os.path.join(save_path, f"checkpoint-{global_step}")
os.makedirs(save_folder, exist_ok=True)
for idx, img in enumerate(images):
img.save(os.path.join(save_folder, f"{idx}.jpg"))
del pipeline
accelerator.wait_for_everyone()
accelerator.end_training()
if __name__ == "__main__":
args = parse_args()
main(args)
|