Spaces:
Running
on
Zero
Running
on
Zero
File size: 41,183 Bytes
f460ce6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 |
import argparse
import copy
import logging
import math
import os
import shutil
from contextlib import nullcontext
from pathlib import Path
import re
import time
from safetensors.torch import save_file
from PIL import Image
import numpy as np
import torch
import torch.utils.checkpoint
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed
import diffusers
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxPipeline
from diffusers.optimization import get_scheduler
from diffusers.training_utils import (
cast_training_params,
compute_density_for_timestep_sampling,
compute_loss_weighting_for_sd3,
)
from diffusers.utils.torch_utils import is_compiled_module
from diffusers.utils import (
check_min_version,
is_wandb_available,
)
from src.prompt_helper import *
from src.lora_helper import *
from src.jsonl_datasets_kontext_interactive_lora import make_interactive_dataset_subjects, make_placement_dataset_subjects, make_pexels_dataset_subjects, make_mixed_dataset, collate_fn
from diffusers import FluxKontextPipeline
from diffusers.models import FluxTransformer2DModel
from tqdm.auto import tqdm
from peft import LoraConfig
from peft.utils import get_peft_model_state_dict
from diffusers.utils import convert_state_dict_to_diffusers
if is_wandb_available():
import wandb
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.31.0.dev0")
logger = get_logger(__name__)
PREFERRED_KONTEXT_RESOLUTIONS = [
(672, 1568),
(688, 1504),
(720, 1456),
(752, 1392),
(832, 1248),
(880, 1184),
(944, 1104),
(1024, 1024),
(1104, 944),
(1184, 880),
(1248, 832),
(1392, 752),
(1456, 720),
(1504, 688),
(1568, 672),
]
def log_validation(
pipeline,
args,
accelerator,
pipeline_args,
step,
torch_dtype,
is_final_validation=False,
):
logger.info(
f"Running validation... Paired evaluation for image and prompt."
)
pipeline = pipeline.to(device=accelerator.device, dtype=torch_dtype)
pipeline.set_progress_bar_config(disable=True)
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None
# Match compute dtype for validation to avoid dtype mismatches (e.g., VAE bf16 vs float latents)
if torch_dtype in (torch.float16, torch.bfloat16):
device_type = 'cuda' if torch.cuda.is_available() else 'cpu'
autocast_ctx = torch.autocast(device_type=device_type, dtype=torch_dtype)
else:
autocast_ctx = nullcontext()
# Build per-case evaluation
if args.validation_images is None or args.validation_images == ['None']:
raise ValueError("validation_images must be provided and non-empty")
if args.validation_prompt is None:
raise ValueError("validation_prompt must be provided and non-empty")
val_imgs = args.validation_images
prompts = args.validation_prompt
# Prepend instruction to each prompt (same as dataset/test requirement)
instruction = "Fill in the white region naturally and adapt the foreground into the background. Fix the perspective of the foreground object if necessary."
try:
prompts = [f"{instruction} {p}".strip() if isinstance(p, str) and len(p.strip()) > 0 else instruction for p in prompts]
except Exception:
# Fallback: keep original prompts if unexpected
pass
if not (len(val_imgs) == len(prompts)):
raise ValueError(
f"Length mismatch: validation_images={len(val_imgs)}, validation_prompt={len(prompts)}"
)
results = []
def _resize_to_preferred(img: Image.Image) -> Image.Image:
w, h = img.size
aspect_ratio = w / h if h != 0 else 1.0
_, target_w, target_h = min(
(abs(aspect_ratio - (pref_w / pref_h)), pref_w, pref_h)
for (pref_h, pref_w) in PREFERRED_KONTEXT_RESOLUTIONS
)
return img.resize((target_w, target_h), Image.BICUBIC)
# Distributed per-rank assignment: each process handles its own slice of cases
num_cases = len(prompts)
logger.info(f"Paired validation (distributed): {num_cases} cases across {accelerator.num_processes} ranks")
# Indices assigned to this rank
rank = accelerator.process_index
world_size = accelerator.num_processes
local_indices = list(range(rank, num_cases, world_size))
local_images = []
with autocast_ctx:
for idx in local_indices:
try:
base_img = Image.open(val_imgs[idx]).convert("RGB")
resized_img = _resize_to_preferred(base_img)
except Exception as e:
raise ValueError(f"Failed to load/resize validation image idx={idx}: {e}")
case_args = dict(pipeline_args) if pipeline_args is not None else {}
case_args.pop("height", None)
case_args.pop("width", None)
if resized_img is not None:
tw, th = resized_img.size
case_args["height"] = th
case_args["width"] = tw
case_args["prompt"] = prompts[idx]
img = pipeline(image=resized_img, **case_args, generator=generator).images[0]
local_images.append(img)
# Gather all images per rank (pad to equal count) to main process
fixed_size = (1024, 1024)
max_local = int(math.ceil(num_cases / world_size)) if world_size > 0 else len(local_images)
# Build per-rank batch tensors
imgs_rank = []
idx_rank = []
has_rank = []
for j in range(max_local):
if j < len(local_images):
resized = local_images[j].resize(fixed_size, Image.BICUBIC)
img_np = np.asarray(resized).astype(np.uint8)
imgs_rank.append(torch.from_numpy(img_np))
idx_rank.append(local_indices[j])
has_rank.append(1)
else:
imgs_rank.append(torch.from_numpy(np.zeros((fixed_size[1], fixed_size[0], 3), dtype=np.uint8)))
idx_rank.append(-1)
has_rank.append(0)
imgs_rank_tensor = torch.stack([t.to(device=accelerator.device) for t in imgs_rank], dim=0) # [max_local, H, W, C]
idx_rank_tensor = torch.tensor(idx_rank, device=accelerator.device, dtype=torch.long) # [max_local]
has_rank_tensor = torch.tensor(has_rank, device=accelerator.device, dtype=torch.int) # [max_local]
gathered_has = accelerator.gather(has_rank_tensor) # [world * max_local]
gathered_idx = accelerator.gather(idx_rank_tensor) # [world * max_local]
gathered_imgs = accelerator.gather(imgs_rank_tensor) # [world * max_local, H, W, C]
if accelerator.is_main_process:
world = int(world_size)
slots = int(max_local)
try:
gathered_has = gathered_has.view(world, slots)
gathered_idx = gathered_idx.view(world, slots)
gathered_imgs = gathered_imgs.view(world, slots, fixed_size[1], fixed_size[0], 3)
except Exception:
# Fallback: treat as flat if reshape fails
gathered_has = gathered_has.view(-1, 1)
gathered_idx = gathered_idx.view(-1, 1)
gathered_imgs = gathered_imgs.view(-1, 1, fixed_size[1], fixed_size[0], 3)
world = int(gathered_has.shape[0])
slots = 1
for i in range(world):
for j in range(slots):
if int(gathered_has[i, j].item()) == 1:
idx = int(gathered_idx[i, j].item())
arr = gathered_imgs[i, j].cpu().numpy()
pil_img = Image.fromarray(arr.astype(np.uint8))
# Resize back to original validation image size
try:
orig = Image.open(val_imgs[idx]).convert("RGB")
pil_img = pil_img.resize(orig.size, Image.BICUBIC)
except Exception:
pass
results.append(pil_img)
# Log results (resize to 1024x1024 for saving or external trackers). Skip TensorBoard per request.
resized_for_log = [img.resize((1024, 1024), Image.BICUBIC) for img in results]
for tracker in accelerator.trackers:
phase_name = "test" if is_final_validation else "validation"
if tracker.name == "tensorboard":
continue
if tracker.name == "wandb":
tracker.log({
phase_name: [wandb.Image(image, caption=f"{i}: {prompts[i] if i < len(prompts) else ''}") for i, image in enumerate(resized_for_log)]
})
del pipeline
if torch.cuda.is_available():
torch.cuda.empty_cache()
return results
def save_with_retry(img: Image.Image, path: str, max_retries: int = 3) -> bool:
"""Save PIL image with simple retry and exponential backoff to mitigate transient I/O errors."""
last_err = None
for attempt in range(max_retries):
try:
os.makedirs(os.path.dirname(path), exist_ok=True)
img.save(path)
return True
except OSError as e:
last_err = e
# Exponential backoff: 1.0, 1.5, 2.25 seconds ...
time.sleep(1.5 ** attempt)
logger.warning(f"Failed to save {path} after {max_retries} retries: {last_err}")
return False
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder"):
text_encoder_config = transformers.PretrainedConfig.from_pretrained(
pretrained_model_name_or_path, subfolder=subfolder, revision=revision
)
model_class = text_encoder_config.architectures[0]
if model_class == "CLIPTextModel":
from transformers import CLIPTextModel
return CLIPTextModel
elif model_class == "T5EncoderModel":
from transformers import T5EncoderModel
return T5EncoderModel
else:
raise ValueError(f"{model_class} is not supported.")
def parse_args(input_args=None):
parser = argparse.ArgumentParser(description="Training script for Flux Kontext with EasyControl.")
parser.add_argument("--mode", type=str, default=None, help="Controller mode; kept for compatibility.")
# Dataset arguments
parser.add_argument("--dataset_mode", type=str, default="mixed", choices=["interactive", "placement", "pexels", "mixed"],
help="Dataset mode: interactive, placement, pexels, or mixed")
parser.add_argument("--train_data_jsonl", type=str, default="/robby/share/Editing/lzc/HOI_v1/final_metadata.jsonl",
help="Path to interactive dataset JSONL")
parser.add_argument("--placement_data_jsonl", type=str, default="/robby/share/Editing/lzc/subject_placement/metadata_relight.jsonl",
help="Path to placement dataset JSONL")
parser.add_argument("--pexels_data_jsonl", type=str, default=None,
help="Path to pexels dataset JSONL")
parser.add_argument("--interactive_base_dir", type=str, default="/robby/share/Editing/lzc/HOI_v1",
help="Base directory for interactive dataset")
parser.add_argument("--placement_base_dir", type=str, default="/robby/share/Editing/lzc/subject_placement",
help="Base directory for placement dataset")
parser.add_argument("--pexels_base_dir", type=str, default=None,
help="Base directory for pexels dataset")
parser.add_argument("--pexels_relight_base_dir", type=str, default=None,
help="Base directory for pexels relighted images")
parser.add_argument("--seg_base_dir", type=str, default=None,
help="Directory containing segmentation maps for pexels dataset")
parser.add_argument("--interactive_weight", type=float, default=1.0,
help="Sampling weight for interactive dataset (default: 1.0)")
parser.add_argument("--placement_weight", type=float, default=1.0,
help="Sampling weight for placement dataset (default: 1.0)")
parser.add_argument("--pexels_weight", type=float, default=0.1,
help="Sampling weight for pexels dataset (default: 1.0)")
parser.add_argument("--pretrained_model_name_or_path", type=str, default="", required=False, help="Base model path")
parser.add_argument("--pretrained_lora_path", type=str, default=None, required=False, help="LoRA checkpoint to initialize from")
parser.add_argument("--revision", type=str, default=None, required=False, help="Revision of pretrained model")
parser.add_argument("--variant", type=str, default=None, help="Variant of the model files")
parser.add_argument("--repeats", type=int, default=1, help="How many times to repeat the training data.")
parser.add_argument("--max_sequence_length", type=int, default=128, help="Max sequence length for T5")
parser.add_argument("--kontext", type=str, default="enable")
parser.add_argument("--validation_prompt", type=str, nargs="+", default=None)
parser.add_argument("--validation_images", type=str, nargs="+", default=None, help="List of valiadation images")
parser.add_argument("--num_validation_images", type=int, default=4)
parser.add_argument("--validation_steps", type=int, default=20)
parser.add_argument("--ranks", type=int, nargs="+", default=[32], help="LoRA ranks")
parser.add_argument("--output_dir", type=str, default="", help="Output directory")
parser.add_argument("--seed", type=int, default=None)
parser.add_argument("--train_batch_size", type=int, default=1)
parser.add_argument("--num_train_epochs", type=int, default=50)
parser.add_argument("--max_train_steps", type=int, default=None)
parser.add_argument("--checkpointing_steps", type=int, default=1000)
parser.add_argument("--checkpoints_total_limit", type=int, default=None)
parser.add_argument("--resume_from_checkpoint", type=str, default=None)
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
parser.add_argument("--gradient_checkpointing", action="store_true")
parser.add_argument("--learning_rate", type=float, default=1e-4)
parser.add_argument("--guidance_scale", type=float, default=1.0, help="Flux Kontext is guidance distilled")
parser.add_argument("--scale_lr", action="store_true", default=False)
parser.add_argument("--lr_scheduler", type=str, default="constant")
parser.add_argument("--lr_warmup_steps", type=int, default=500)
parser.add_argument("--lr_num_cycles", type=int, default=1)
parser.add_argument("--lr_power", type=float, default=1.0)
parser.add_argument("--dataloader_num_workers", type=int, default=8)
parser.add_argument("--weighting_scheme", type=str, default="none", choices=["sigma_sqrt", "logit_normal", "mode", "cosmap", "none"])
parser.add_argument("--logit_mean", type=float, default=0.0)
parser.add_argument("--logit_std", type=float, default=1.0)
parser.add_argument("--mode_scale", type=float, default=1.29)
parser.add_argument("--optimizer", type=str, default="AdamW")
parser.add_argument("--use_8bit_adam", action="store_true")
parser.add_argument("--adam_beta1", type=float, default=0.9)
parser.add_argument("--adam_beta2", type=float, default=0.999)
parser.add_argument("--prodigy_beta3", type=float, default=None)
parser.add_argument("--prodigy_decouple", type=bool, default=True)
parser.add_argument("--adam_weight_decay", type=float, default=1e-04)
parser.add_argument("--adam_weight_decay_text_encoder", type=float, default=1e-03)
parser.add_argument("--adam_epsilon", type=float, default=1e-08)
parser.add_argument("--prodigy_use_bias_correction", type=bool, default=True)
parser.add_argument("--prodigy_safeguard_warmup", type=bool, default=True)
parser.add_argument("--max_grad_norm", type=float, default=1.0)
parser.add_argument("--logging_dir", type=str, default="logs")
parser.add_argument("--cache_latents", action="store_true", default=False)
parser.add_argument("--report_to", type=str, default="tensorboard")
parser.add_argument("--mixed_precision", type=str, default="bf16", choices=["no", "fp16", "bf16"])
parser.add_argument("--upcast_before_saving", action="store_true", default=False)
# Blending options for dataset pixel_values
parser.add_argument("--blend_pixel_values", action="store_true", help="Blend target/source into pixel_values using mask")
parser.add_argument("--blend_kernel", type=int, default=21, help="Gaussian blur kernel size (must be odd)")
parser.add_argument("--blend_sigma", type=float, default=10.0, help="Gaussian blur sigma")
if input_args is not None:
args = parser.parse_args(input_args)
else:
args = parser.parse_args()
return args
def main(args):
if torch.backends.mps.is_available() and args.mixed_precision == "bf16":
raise ValueError("Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 or fp32 instead.")
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
os.makedirs(args.logging_dir, exist_ok=True)
logging_dir = Path(args.output_dir, args.logging_dir)
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=args.report_to,
project_config=accelerator_project_config,
kwargs_handlers=[kwargs],
)
if torch.backends.mps.is_available():
accelerator.native_amp = False
if args.report_to == "wandb":
if not is_wandb_available():
raise ImportError("Install wandb for logging during training.")
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
if args.seed is not None:
set_seed(args.seed)
if accelerator.is_main_process and args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
# Tokenizers
tokenizer_one = transformers.CLIPTokenizer.from_pretrained(
args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision
)
tokenizer_two = transformers.T5TokenizerFast.from_pretrained(
args.pretrained_model_name_or_path, subfolder="tokenizer_2", revision=args.revision
)
# Text encoders
text_encoder_cls_one = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder")
text_encoder_cls_two = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_2")
# Scheduler and models
noise_scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
noise_scheduler_copy = copy.deepcopy(noise_scheduler)
text_encoder_one, text_encoder_two = load_text_encoders(args, text_encoder_cls_one, text_encoder_cls_two)
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, variant=args.variant)
transformer = FluxTransformer2DModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="transformer", revision=args.revision, variant=args.variant)
# Train only LoRA adapters: freeze base transformer/text encoders/vae
transformer.requires_grad_(False)
vae.requires_grad_(False)
text_encoder_one.requires_grad_(False)
text_encoder_two.requires_grad_(False)
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
if torch.backends.mps.is_available() and weight_dtype == torch.bfloat16:
raise ValueError("Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 or fp32 instead.")
vae.to(accelerator.device, dtype=weight_dtype)
transformer.to(accelerator.device, dtype=weight_dtype)
text_encoder_one.to(accelerator.device, dtype=weight_dtype)
text_encoder_two.to(accelerator.device, dtype=weight_dtype)
if args.gradient_checkpointing:
transformer.enable_gradient_checkpointing()
# Setup standard PEFT LoRA on FluxTransformer2DModel
# target_modules = [
# "attn.to_k",
# "attn.to_q",
# "attn.to_v",
# "attn.to_out.0",
# "attn.add_k_proj",
# "attn.add_q_proj",
# "attn.add_v_proj",
# "attn.to_add_out",
# "ff.net.0.proj",
# "ff.net.2",
# "ff_context.net.0.proj",
# "ff_context.net.2",
# ]
target_modules = [
"attn.to_k",
"attn.to_q",
"attn.to_v",
"attn.to_out.0",
"attn.add_k_proj",
"attn.add_q_proj",
"attn.add_v_proj",
"attn.to_add_out",
"ff.net.0.proj",
"ff.net.2",
"ff_context.net.0.proj",
"ff_context.net.2",
# ===========================================================
# 【补全部分 1】: 单流模块 (single_transformer_blocks) 的专属层
# ===========================================================
# 说明:单流块中的注意力层 (to_q, to_k, to_v) 已被上面的通用名称覆盖。
# 这里补充的是它们特有的 MLP 和输出层。
"proj_mlp",
"proj_out", # 这个名称也会匹配单流块各自的输出层和模型总输出层
# ===========================================================
# 【补全部分 2】: 所有的归一化 (Norm) 层
# ===========================================================
# 说明:这些层负责调整特征分布,对风格学习很重要。
# 使用 "linear" 可以一次性匹配所有以 ".linear" 结尾的Norm层。
"linear", # 匹配 norm1.linear, norm1_context.linear, norm.linear, norm_out.linear
]
lora_rank = int(args.ranks[0]) if isinstance(args.ranks, list) and len(args.ranks) > 0 else 256
lora_config = LoraConfig(
r=lora_rank,
lora_alpha=lora_rank,
init_lora_weights="gaussian",
target_modules=target_modules,
)
transformer.add_adapter(lora_config)
transformer.train()
print(sum([p.numel() for p in transformer.parameters() if p.requires_grad]) / 1000000, 'M parameters')
def unwrap_model(model):
model = accelerator.unwrap_model(model)
model = model._orig_mod if is_compiled_module(model) else model
return model
if args.resume_from_checkpoint:
path = args.resume_from_checkpoint
global_step = int(path.split("-")[-1])
initial_global_step = global_step
else:
initial_global_step = 0
global_step = 0
first_epoch = 0
if args.scale_lr:
args.learning_rate = (
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
)
if args.mixed_precision == "fp16":
models = [transformer]
cast_training_params(models, dtype=torch.float32)
params_to_optimize = [p for p in transformer.parameters() if p.requires_grad]
transformer_parameters_with_lr = {"params": params_to_optimize, "lr": args.learning_rate}
# print(sum([p.numel() for p in transformer.parameters() if p.requires_grad]) / 1000000, 'parameters')
optimizer_class = torch.optim.AdamW
optimizer = optimizer_class(
[transformer_parameters_with_lr],
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
tokenizers = [tokenizer_one, tokenizer_two]
text_encoders = [text_encoder_one, text_encoder_two]
# Create dataset based on mode
if args.dataset_mode == "mixed":
# Mixed mode: combine all available datasets
train_dataset = make_mixed_dataset(
args,
tokenizers,
interactive_jsonl_path=args.train_data_jsonl,
placement_jsonl_path=args.placement_data_jsonl,
pexels_jsonl_path=args.pexels_data_jsonl,
interactive_base_dir=args.interactive_base_dir,
placement_base_dir=args.placement_base_dir,
pexels_base_dir=args.pexels_base_dir,
interactive_weight=args.interactive_weight,
placement_weight=args.placement_weight,
pexels_weight=args.pexels_weight,
accelerator=accelerator
)
weights_str = []
if args.train_data_jsonl:
weights_str.append(f"Interactive: {args.interactive_weight:.2f}")
if args.placement_data_jsonl:
weights_str.append(f"Placement: {args.placement_weight:.2f}")
if args.pexels_data_jsonl:
weights_str.append(f"Pexels: {args.pexels_weight:.2f}")
logger.info(f"Mixed dataset created with weights - {', '.join(weights_str)}")
elif args.dataset_mode == "pexels":
if not args.pexels_data_jsonl:
raise ValueError("pexels_data_jsonl must be provided for pexels mode")
train_dataset = make_pexels_dataset_subjects(args, tokenizers, accelerator)
elif args.dataset_mode == "placement":
if not args.placement_data_jsonl:
raise ValueError("placement_data_jsonl must be provided for placement mode")
train_dataset = make_placement_dataset_subjects(args, tokenizers, accelerator)
else: # interactive mode
train_dataset = make_interactive_dataset_subjects(args, tokenizers, accelerator)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.train_batch_size,
shuffle=True,
collate_fn=collate_fn,
num_workers=args.dataloader_num_workers,
)
vae_config_shift_factor = vae.config.shift_factor
vae_config_scaling_factor = vae.config.scaling_factor
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.resume_from_checkpoint:
first_epoch = global_step // num_update_steps_per_epoch
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
num_training_steps=args.max_train_steps * accelerator.num_processes,
num_cycles=args.lr_num_cycles,
power=args.lr_power,
)
transformer, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
transformer, optimizer, train_dataloader, lr_scheduler
)
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# Sanitize config for TensorBoard hparams (only allow int/float/bool/str/tensor). Others are stringified if possible; otherwise dropped
def _sanitize_hparams(config_dict):
sanitized = {}
for key, value in dict(config_dict).items():
try:
if value is None:
continue
# numpy scalar types
if isinstance(value, (np.integer,)):
sanitized[key] = int(value)
elif isinstance(value, (np.floating,)):
sanitized[key] = float(value)
elif isinstance(value, (int, float, bool, str)):
sanitized[key] = value
elif isinstance(value, Path):
sanitized[key] = str(value)
elif isinstance(value, (list, tuple)):
# stringify simple sequences; skip if fails
sanitized[key] = str(value)
else:
# best-effort stringify
sanitized[key] = str(value)
except Exception:
# skip unconvertible entries
continue
return sanitized
if accelerator.is_main_process:
tracker_name = "Easy_Control_Kontext"
accelerator.init_trackers(tracker_name, config=_sanitize_hparams(vars(args)))
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num batches each epoch = {len(train_dataloader)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
progress_bar = tqdm(
range(0, args.max_train_steps),
initial=initial_global_step,
desc="Steps",
disable=not accelerator.is_local_main_process,
)
def get_sigmas(timesteps, n_dim=4, dtype=torch.float32):
sigmas = noise_scheduler_copy.sigmas.to(device=accelerator.device, dtype=dtype)
schedule_timesteps = noise_scheduler_copy.timesteps.to(accelerator.device)
timesteps = timesteps.to(accelerator.device)
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
sigma = sigmas[step_indices].flatten()
while len(sigma.shape) < n_dim:
sigma = sigma.unsqueeze(-1)
return sigma
# Kontext specifics
vae_scale_factor = 8 # Kontext uses 8x VAE factor; pack/unpack uses additional 2x in methods
for epoch in range(first_epoch, args.num_train_epochs):
transformer.train()
for step, batch in enumerate(train_dataloader):
models_to_accumulate = [transformer]
with accelerator.accumulate(models_to_accumulate):
tokens = [batch["text_ids_1"], batch["text_ids_2"]]
prompt_embeds, pooled_prompt_embeds, text_ids = encode_token_ids(text_encoders, tokens, accelerator)
prompt_embeds = prompt_embeds.to(dtype=vae.dtype, device=accelerator.device)
pooled_prompt_embeds = pooled_prompt_embeds.to(dtype=vae.dtype, device=accelerator.device)
text_ids = text_ids.to(dtype=vae.dtype, device=accelerator.device)
pixel_values = batch["pixel_values"].to(dtype=vae.dtype)
height_ = 2 * (int(pixel_values.shape[-2]) // (vae_scale_factor * 2))
width_ = 2 * (int(pixel_values.shape[-1]) // (vae_scale_factor * 2))
model_input = vae.encode(pixel_values).latent_dist.sample()
model_input = (model_input - vae_config_shift_factor) * vae_config_scaling_factor
model_input = model_input.to(dtype=weight_dtype)
# Prepare latent ids for transformer (positional encodings)
latent_image_ids = FluxKontextPipeline._prepare_latent_image_ids(
batch_size=model_input.shape[0],
height=model_input.shape[2] // 2,
width=model_input.shape[3] // 2,
device=accelerator.device,
dtype=weight_dtype,
)
noise = torch.randn_like(model_input)
bsz = model_input.shape[0]
u = compute_density_for_timestep_sampling(
weighting_scheme=args.weighting_scheme,
batch_size=bsz,
logit_mean=args.logit_mean,
logit_std=args.logit_std,
mode_scale=args.mode_scale,
)
indices = (u * noise_scheduler_copy.config.num_train_timesteps).long()
timesteps = noise_scheduler_copy.timesteps[indices].to(device=model_input.device)
sigmas = get_sigmas(timesteps, n_dim=model_input.ndim, dtype=model_input.dtype)
noisy_model_input = (1.0 - sigmas) * model_input + sigmas * noise
packed_noisy_model_input = FluxKontextPipeline._pack_latents(
noisy_model_input,
batch_size=model_input.shape[0],
num_channels_latents=model_input.shape[1],
height=model_input.shape[2],
width=model_input.shape[3],
)
if accelerator.unwrap_model(transformer).config.guidance_embeds:
guidance = torch.tensor([args.guidance_scale], device=accelerator.device)
guidance = guidance.expand(model_input.shape[0])
else:
guidance = None
# If kontext editing is enabled, append source image latents to the sequence
latent_model_input = packed_noisy_model_input
if args.kontext == "enable":
source_pixel_values = batch["source_pixel_values"].to(dtype=vae.dtype)
source_image_latents = vae.encode(source_pixel_values).latent_dist.sample()
source_image_latents = (source_image_latents - vae_config_shift_factor) * vae_config_scaling_factor
image_latent_h, image_latent_w = source_image_latents.shape[2:]
packed_image_latents = FluxKontextPipeline._pack_latents(
source_image_latents,
batch_size=source_image_latents.shape[0],
num_channels_latents=source_image_latents.shape[1],
height=image_latent_h,
width=image_latent_w,
)
source_image_ids = FluxKontextPipeline._prepare_latent_image_ids(
batch_size=source_image_latents.shape[0],
height=image_latent_h // 2,
width=image_latent_w // 2,
device=accelerator.device,
dtype=weight_dtype,
)
source_image_ids[..., 0] = 1
latent_model_input = torch.cat([latent_model_input, packed_image_latents], dim=1)
latent_image_ids = torch.cat([latent_image_ids, source_image_ids], dim=0)
# Forward transformer with packed latents and ids
model_pred = transformer(
hidden_states=latent_model_input,
timestep=timesteps / 1000,
guidance=guidance,
pooled_projections=pooled_prompt_embeds,
encoder_hidden_states=prompt_embeds,
txt_ids=text_ids,
img_ids=latent_image_ids,
return_dict=False,
)[0]
model_pred = model_pred[:, : packed_noisy_model_input.size(1)]
model_pred = FluxKontextPipeline._unpack_latents(
model_pred,
height=int(pixel_values.shape[-2]),
width=int(pixel_values.shape[-1]),
vae_scale_factor=vae_scale_factor,
)
weighting = compute_loss_weighting_for_sd3(weighting_scheme=args.weighting_scheme, sigmas=sigmas)
target = noise - model_input
loss = torch.mean((weighting.float() * (model_pred.float() - target.float()) ** 2).reshape(target.shape[0], -1), 1)
loss = loss.mean()
accelerator.backward(loss)
if accelerator.sync_gradients:
params_to_clip = (transformer.parameters())
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
if accelerator.is_main_process:
if global_step % args.checkpointing_steps == 0:
if args.checkpoints_total_limit is not None:
checkpoints = os.listdir(args.output_dir)
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))
if len(checkpoints) >= args.checkpoints_total_limit:
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
removing_checkpoints = checkpoints[0:num_to_remove]
logger.info(f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints")
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")
for removing_checkpoint in removing_checkpoints:
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
shutil.rmtree(removing_checkpoint)
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
os.makedirs(save_path, exist_ok=True)
unwrapped = accelerator.unwrap_model(transformer)
peft_state = get_peft_model_state_dict(unwrapped)
# Convert PEFT state dict to diffusers LoRA format for transformer
diffusers_lora = convert_state_dict_to_diffusers(peft_state)
save_file(diffusers_lora, os.path.join(save_path, "pytorch_lora_weights.safetensors"))
logger.info(f"Saved state to {save_path}")
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
if args.validation_prompt is not None and global_step % args.validation_steps == 0:
# Create pipeline on every rank to run validation in parallel
pipeline = FluxKontextPipeline.from_pretrained(
args.pretrained_model_name_or_path,
vae=vae,
text_encoder=accelerator.unwrap_model(text_encoder_one),
text_encoder_2=accelerator.unwrap_model(text_encoder_two),
transformer=accelerator.unwrap_model(transformer),
revision=args.revision,
variant=args.variant,
torch_dtype=weight_dtype,
)
pipeline_args = {
"prompt": args.validation_prompt,
"guidance_scale": 3.5,
"num_inference_steps": 20,
"max_sequence_length": 128,
}
images = log_validation(
pipeline=pipeline,
args=args,
accelerator=accelerator,
pipeline_args=pipeline_args,
step=global_step,
torch_dtype=weight_dtype,
)
# Only main process saves/logs
if accelerator.is_main_process:
save_path = os.path.join(args.output_dir, "validation")
os.makedirs(save_path, exist_ok=True)
save_folder = os.path.join(save_path, f"checkpoint-{global_step}")
os.makedirs(save_folder, exist_ok=True)
for idx, img in enumerate(images):
out_path = os.path.join(save_folder, f"{idx}.jpg")
save_with_retry(img, out_path)
del pipeline
accelerator.wait_for_everyone()
accelerator.end_training()
if __name__ == "__main__":
args = parse_args()
main(args)
|