Spaces:
Running
on
Zero
Running
on
Zero
| # This is an improved version and model of HED edge detection with Apache License, Version 2.0. | |
| # Please use this implementation in your products | |
| # This implementation may produce slightly different results from Saining Xie's official implementations, | |
| # but it generates smoother edges and is more suitable for ControlNet as well as other image-to-image translations. | |
| # Different from official models and other implementations, this is an RGB-input model (rather than BGR) | |
| # and in this way it works better for gradio's RGB protocol | |
| import os | |
| import warnings | |
| import cv2 | |
| import numpy as np | |
| import torch | |
| from einops import rearrange | |
| from PIL import Image | |
| from .util import HWC3, nms, resize_image_with_pad, safe_step, common_input_validate | |
| class DoubleConvBlock(torch.nn.Module): | |
| def __init__(self, input_channel, output_channel, layer_number): | |
| super().__init__() | |
| self.convs = torch.nn.Sequential() | |
| self.convs.append(torch.nn.Conv2d(in_channels=input_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1)) | |
| for i in range(1, layer_number): | |
| self.convs.append(torch.nn.Conv2d(in_channels=output_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1)) | |
| self.projection = torch.nn.Conv2d(in_channels=output_channel, out_channels=1, kernel_size=(1, 1), stride=(1, 1), padding=0) | |
| def __call__(self, x, down_sampling=False): | |
| h = x | |
| if down_sampling: | |
| h = torch.nn.functional.max_pool2d(h, kernel_size=(2, 2), stride=(2, 2)) | |
| for conv in self.convs: | |
| h = conv(h) | |
| h = torch.nn.functional.relu(h) | |
| return h, self.projection(h) | |
| class ControlNetHED_Apache2(torch.nn.Module): | |
| def __init__(self): | |
| super().__init__() | |
| self.norm = torch.nn.Parameter(torch.zeros(size=(1, 3, 1, 1))) | |
| self.block1 = DoubleConvBlock(input_channel=3, output_channel=64, layer_number=2) | |
| self.block2 = DoubleConvBlock(input_channel=64, output_channel=128, layer_number=2) | |
| self.block3 = DoubleConvBlock(input_channel=128, output_channel=256, layer_number=3) | |
| self.block4 = DoubleConvBlock(input_channel=256, output_channel=512, layer_number=3) | |
| self.block5 = DoubleConvBlock(input_channel=512, output_channel=512, layer_number=3) | |
| def __call__(self, x): | |
| h = x - self.norm | |
| h, projection1 = self.block1(h) | |
| h, projection2 = self.block2(h, down_sampling=True) | |
| h, projection3 = self.block3(h, down_sampling=True) | |
| h, projection4 = self.block4(h, down_sampling=True) | |
| h, projection5 = self.block5(h, down_sampling=True) | |
| return projection1, projection2, projection3, projection4, projection5 |