Spaces:
Running
on
Zero
Running
on
Zero
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import torch | |
| import functools | |
| from torchvision import models | |
| from torch.autograd import Variable | |
| import numpy as np | |
| import math | |
| norm_layer = nn.InstanceNorm2d | |
| class ResidualBlock(nn.Module): | |
| def __init__(self, in_features): | |
| super(ResidualBlock, self).__init__() | |
| conv_block = [ nn.ReflectionPad2d(1), | |
| nn.Conv2d(in_features, in_features, 3), | |
| norm_layer(in_features), | |
| nn.ReLU(inplace=True), | |
| nn.ReflectionPad2d(1), | |
| nn.Conv2d(in_features, in_features, 3), | |
| norm_layer(in_features) | |
| ] | |
| self.conv_block = nn.Sequential(*conv_block) | |
| def forward(self, x): | |
| return x + self.conv_block(x) | |
| class Generator(nn.Module): | |
| def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True): | |
| super(Generator, self).__init__() | |
| # Initial convolution block | |
| model0 = [ nn.ReflectionPad2d(3), | |
| nn.Conv2d(input_nc, 64, 7), | |
| norm_layer(64), | |
| nn.ReLU(inplace=True) ] | |
| self.model0 = nn.Sequential(*model0) | |
| # Downsampling | |
| model1 = [] | |
| in_features = 64 | |
| out_features = in_features*2 | |
| for _ in range(2): | |
| model1 += [ nn.Conv2d(in_features, out_features, 3, stride=2, padding=1), | |
| norm_layer(out_features), | |
| nn.ReLU(inplace=True) ] | |
| in_features = out_features | |
| out_features = in_features*2 | |
| self.model1 = nn.Sequential(*model1) | |
| model2 = [] | |
| # Residual blocks | |
| for _ in range(n_residual_blocks): | |
| model2 += [ResidualBlock(in_features)] | |
| self.model2 = nn.Sequential(*model2) | |
| # Upsampling | |
| model3 = [] | |
| out_features = in_features//2 | |
| for _ in range(2): | |
| model3 += [ nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1), | |
| norm_layer(out_features), | |
| nn.ReLU(inplace=True) ] | |
| in_features = out_features | |
| out_features = in_features//2 | |
| self.model3 = nn.Sequential(*model3) | |
| # Output layer | |
| model4 = [ nn.ReflectionPad2d(3), | |
| nn.Conv2d(64, output_nc, 7)] | |
| if sigmoid: | |
| model4 += [nn.Sigmoid()] | |
| self.model4 = nn.Sequential(*model4) | |
| def forward(self, x, cond=None): | |
| out = self.model0(x) | |
| out = self.model1(out) | |
| out = self.model2(out) | |
| out = self.model3(out) | |
| out = self.model4(out) | |
| return out |