import os import random import tempfile import warnings from contextlib import suppress from pathlib import Path import cv2 import numpy as np import torch from huggingface_hub import constants, hf_hub_download from torch.hub import get_dir, download_url_to_file from ast import literal_eval import torch.nn.functional as F import torch.nn as nn def safe_step(x, step=2): y = x.astype(np.float32) * float(step + 1) y = y.astype(np.int32).astype(np.float32) / float(step) return y def nms(x, t, s): x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s) f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8) f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8) f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8) f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8) y = np.zeros_like(x) for f in [f1, f2, f3, f4]: np.putmask(y, cv2.dilate(x, kernel=f) == x, x) z = np.zeros_like(y, dtype=np.uint8) z[y > t] = 255 return z def safer_memory(x): # Fix many MAC/AMD problems return np.ascontiguousarray(x.copy()).copy() UPSCALE_METHODS = ["INTER_NEAREST", "INTER_LINEAR", "INTER_AREA", "INTER_CUBIC", "INTER_LANCZOS4"] def get_upscale_method(method_str): assert method_str in UPSCALE_METHODS, f"Method {method_str} not found in {UPSCALE_METHODS}" return getattr(cv2, method_str) def pad64(x): return int(np.ceil(float(x) / 64.0) * 64 - x) def resize_image_with_pad(input_image, resolution, upscale_method = "", skip_hwc3=False, mode='edge'): if skip_hwc3: img = input_image else: img = HWC3(input_image) H_raw, W_raw, _ = img.shape if resolution == 0: return img, lambda x: x k = float(resolution) / float(min(H_raw, W_raw)) H_target = int(np.round(float(H_raw) * k)) W_target = int(np.round(float(W_raw) * k)) img = cv2.resize(img, (W_target, H_target), interpolation=get_upscale_method(upscale_method) if k > 1 else cv2.INTER_AREA) H_pad, W_pad = pad64(H_target), pad64(W_target) img_padded = np.pad(img, [[0, H_pad], [0, W_pad], [0, 0]], mode=mode) def remove_pad(x): return safer_memory(x[:H_target, :W_target, ...]) return safer_memory(img_padded), remove_pad def common_input_validate(input_image, output_type, **kwargs): if "img" in kwargs: warnings.warn("img is deprecated, please use `input_image=...` instead.", DeprecationWarning) input_image = kwargs.pop("img") if "return_pil" in kwargs: warnings.warn("return_pil is deprecated. Use output_type instead.", DeprecationWarning) output_type = "pil" if kwargs["return_pil"] else "np" if type(output_type) is bool: warnings.warn("Passing `True` or `False` to `output_type` is deprecated and will raise an error in future versions") if output_type: output_type = "pil" if input_image is None: raise ValueError("input_image must be defined.") if not isinstance(input_image, np.ndarray): input_image = np.array(input_image, dtype=np.uint8) output_type = output_type or "pil" else: output_type = output_type or "np" return (input_image, output_type) def HWC3(x): assert x.dtype == np.uint8 if x.ndim == 2: x = x[:, :, None] assert x.ndim == 3 H, W, C = x.shape assert C == 1 or C == 3 or C == 4 if C == 3: return x if C == 1: return np.concatenate([x, x, x], axis=2) if C == 4: color = x[:, :, 0:3].astype(np.float32) alpha = x[:, :, 3:4].astype(np.float32) / 255.0 y = color * alpha + 255.0 * (1.0 - alpha) y = y.clip(0, 255).astype(np.uint8) return y def get_intensity_mask(image_array, lower_bound, upper_bound): mask = image_array[:, :, 0] mask = np.where((mask >= lower_bound) & (mask <= upper_bound), mask, 0) mask = np.expand_dims(mask, 2).repeat(3, axis=2) return mask def combine_layers(base_layer, top_layer): mask = top_layer.astype(bool) temp = 1 - (1 - top_layer) * (1 - base_layer) result = base_layer * (~mask) + temp * mask return result @torch.jit.script def mish(input): """ Applies the mish function element-wise: mish(x) = x * tanh(softplus(x)) = x * tanh(ln(1 + exp(x))) See additional documentation for mish class. """ return input * torch.tanh(F.softplus(input)) @torch.jit.script def smish(input): """ Applies the mish function element-wise: mish(x) = x * tanh(softplus(x)) = x * tanh(ln(1 + exp(sigmoid(x)))) See additional documentation for mish class. """ return input * torch.tanh(torch.log(1+torch.sigmoid(input))) class Mish(nn.Module): """ Applies the mish function element-wise: mish(x) = x * tanh(softplus(x)) = x * tanh(ln(1 + exp(x))) Shape: - Input: (N, *) where * means, any number of additional dimensions - Output: (N, *), same shape as the input Examples: >>> m = Mish() >>> input = torch.randn(2) >>> output = m(input) Reference: https://pytorch.org/docs/stable/generated/torch.nn.Mish.html """ def __init__(self): """ Init method. """ super().__init__() def forward(self, input): """ Forward pass of the function. """ if torch.__version__ >= "1.9": return F.mish(input) else: return mish(input) class Smish(nn.Module): """ Applies the mish function element-wise: mish(x) = x * tanh(softplus(x)) = x * tanh(ln(1 + exp(x))) Shape: - Input: (N, *) where * means, any number of additional dimensions - Output: (N, *), same shape as the input Examples: >>> m = Mish() >>> input = torch.randn(2) >>> output = m(input) Reference: https://pytorch.org/docs/stable/generated/torch.nn.Mish.html """ def __init__(self): """ Init method. """ super().__init__() def forward(self, input): """ Forward pass of the function. """ return smish(input)